Skip to main content
Log in

Dimaval as an efficient ligand for binding Ru(III) on cross-linked chitosan aerogel: synthesis, characterisation and catalytic investigation

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Ru(III)/dimaval was deposited on chitosan aerogel through the ionic interactions of the proton exchange between the dimaval sulfonic acid and chitosan aerogel amine group. After characterization, the composite was used in the oxidation reaction of certain alkylarenes, aliphatic and benzylic alcohols as well as cyclohexanol. High conversions and excellent selectivities were obtained for the solvent-free reactions using a low catalyst amount under aerobic conditions at 80 °C for 2–5 h. The organometallic compound is applicable as a heterogeneous catalyst having high chemical stability and recyclability up to eight times.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CA:

Chitosan aerogel

RuD@CA:

Ru(III)-dimaval support on chitosan aerogel

SEM:

Scanning electron microscope

XRD:

X-ray diffraction

XPS:

X-ray photoelectron spectroscopy

FAAS:

Flame atomic absorption spectroscopy

BET:

Brunauer–Emmett–Teller

GC:

Gas chromatography

References

  • Baig RBN, Nadagouda MN, Varma RS (2014) Ruthenium on chitosan: a recyclable heterogeneous catalyst for aqueous hydration of nitriles to amides. Green Chem 16:2122–2127

    CAS  Google Scholar 

  • Barak G, Dakka J, Sasson Y (1988) Selective oxidation of alcohols by a H2O2–RuCl3 system under phase-transfer conditions. J Org Chem 53:3553–3558

    CAS  Google Scholar 

  • Bilgrien C, Davis S, Drago RS (1987) The selective oxidation of primary alcohols to aldehydes by oxygen employing a trinuclear ruthenium carboxylate catalyst. J Am Chem Soc 109:3786–3787

    CAS  Google Scholar 

  • Brustolin L, Nardon C, Pettenuzzo N, Zuin Fantoni N, Quarta S, Chiara F, Gambalunga A, Trevisan A, Marchiò L, Pontissoc P, Fregona D (2018) Synthesis, chemical characterization and cancer cell growth-inhibitory activities of Cu(II) and Ru(III) aliphatic and aromatic dithiocarbamato complexes. Dalton Trans 47:15477–15486

    CAS  PubMed  Google Scholar 

  • Chang X, Chen D, Jiao X (2008) Chitosan-based aerogels with high adsorption performance. J Phys Chem B 112:7721–7725

    CAS  PubMed  Google Scholar 

  • Chauhan S (2015) Modification of chitosan for sorption of metal ions. J Chem Pharm Res 7:49–55

    CAS  Google Scholar 

  • Che CM, Yip WP, Yu WY (2006) Ruthenium-catalyzed oxidation of alkenes, alkynes, and alcohols to organic acids with aqueous hydrogen peroxide. Chem Asian J 1:453–458

    CAS  PubMed  Google Scholar 

  • El Kadib A (2005) Chitosan as a sustainable organocatalyst: a concise overview. Chemsuschem 8:217–244

    Google Scholar 

  • Follmann HDM, Martins AF, Nobre TM, Bresolin JD, Cellet TSP, Valderrama P, Correa DS, Muniz EC, Oliveira ON Jr (2016) Extent of shielding by counterions determines the bactericidal activity of N,N,N-trimethyl chitosan salts. Carbohydr Polym 137:418–425

    CAS  PubMed  Google Scholar 

  • Gore ES (1983) Ruthenium-catalyzed oxidations of organic compounds. Platin Metals Rev 27:111–125

    CAS  Google Scholar 

  • Guibal E (2005) Heterogeneous catalysis on chitosan-based materials: a review. Prog Polym Sci 30:71–109

    CAS  Google Scholar 

  • Guo H, Liu WD, Yin G (2011) Aerobic oxidation of alcohols to aldehydes and ketones using ruthenium(III)/Et3N catalyst. Appl Organomet Chem 25:836–842

    CAS  Google Scholar 

  • Guo DM, Ana QD, Xiao ZY, Zhai SR, Yang DJ (2018) Efficient removal of Pb(II), Cr(VI) and organic dyes by polydopamine modified chitosan aerogels. Carbohydr Polym 202:306–314

    CAS  PubMed  Google Scholar 

  • Kamata K, Kasai J, Yamaguchi K, Mizuno N (2004) Efficient heterogeneous oxidation of alkylarenes with molecular oxygen. Org Lett 6:3577–3580

    CAS  PubMed  Google Scholar 

  • Katritzky R, Meth-Cohn O, Rees CW, Pattenden G (1995) Comprehensive organic functional group transformations. Elsevier Science, Oxford

    Google Scholar 

  • Keshipour S, Adak K (2017) Magnetic D-penicillamine-functionalized cellulose as a new heterogeneous support for cobalt(II) in green oxidation of ethylbenzene to acetophenone. Appl Organomet Chem 31:e3774

    Google Scholar 

  • Keshipour S, Khezerloo M (2018) Au-dimercaprol functionalized cellulose aerogel: synthesis, characterization and catalytic application. Appl Organomet Chem 32:e4255

    Google Scholar 

  • Keshipour S, Mirmasoudi SS (2018) Cross-linked chitosan aerogel modified with Au: synthesis, characterization and catalytic application. Carbohydr Polym 196:494–500

    CAS  PubMed  Google Scholar 

  • Keshipour S, Shaabani A (2014) Copper(I) and palladium nanoparticles supported on ethylenediamine-functionalized cellulose as an efficient catalyst for the 1,3-dipolar cycloaddition/direct arylation sequence. Appl Organomet Chem 28:116–119

    CAS  Google Scholar 

  • Keshipour S, Shojaei S, Shaabani A (2013) Palladium nano-particles supported on ethylenediaminefunctionalized cellulose as a novel and efficient catalyst for the Heck and Sonogashira couplings in water. Cellulose 20:973–980

    CAS  Google Scholar 

  • Keshipour S, Ahmadi F, Seyyedi B (2017) Chitosan-modified Pd(II)-d-penicillamine: preparation, characterization, and catalyst application. Cellulose 24:1455–1462

    CAS  Google Scholar 

  • Kim YH, Hwang SK, Kim JW, Lee YS (2014) Zirconia-supported ruthenium catalyst for efficient aerobic oxidation of alcohols to aldehydes. Ind Eng Chem Res 53:12548–12552

    CAS  Google Scholar 

  • Kyzas GZ, Bikiaris DN (2015) Recent modifications of chitosan for adsorption applications: a critical and systematic review. Mar Drugs 13:312–337

    PubMed  PubMed Central  Google Scholar 

  • Larock RC (1999) In comprehensive organic transformations: a guide to functional group preparations, 2nd edn. Wiley-VCH, New York

    Google Scholar 

  • Lazareva VI, Lazarev AI (1986) Spectrophotometric determination of ruthenium with unithiol. Zavodsk Lab 51:1075–1080

    Google Scholar 

  • Li A, Lin R, Lin C, He B, Zheng T, Lu L, Cao Y (2016) An environment-friendly and multi-functional absorbent from chitosan for organic pollutants and heavy metal ion. Carbohydr Polym 148:272–280

    CAS  PubMed  Google Scholar 

  • Maleki A, Ghamari N, Kamalzare M (2014) Chitosan-supported Fe3O4 nanoparticles: a magnetically recyclable heterogeneous nanocatalyst for the syntheses of multifunctional benzimidazoles and benzodiazepines. RSC Adv 4:9416–9423

    CAS  Google Scholar 

  • Maleki A, Agaei M, Ghamari N (2016) Facile synthesis of tetrahydrobenzoxanthenones via a one-pot three-component reaction using an eco-friendly and magnetized biopolymer chitosan-based heterogeneous nanocatalyst. Appl Organomet Chem 30:939–942

    CAS  Google Scholar 

  • Mannel DS, Stahl SS, Root TW (2014) Continuous flow aerobic alcohol oxidation reactions using a heterogeneous Ru(OH)x/Al2O3 catalyst. Org Process Res Dev 18:1503–1508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marko IE, Giles PR, Tsukazaki M, Chellé-Regnaut I, Urch CJ, Brown SM (1997) Efficient, aerobic, ruthenium-catalyzed oxidation of alcohols into aldehydes and ketones. J Am Chem Soc 119:12661–12662

    CAS  Google Scholar 

  • Morgan DJ (2015) Resolving ruthenium: XPS studies of common ruthenium mate-rials. Surf Interface Anal 47:1072–1079

    CAS  Google Scholar 

  • Murahashi S, Naota T, Hirai N (1993) Aerobic oxidation of alcohols with ruthenium-cobalt bimetallic catalyst in the presence of aldehydes. J Org Chem 58:7318–7319

    CAS  Google Scholar 

  • Pestov A, Bratskaya S (2016) Chitosan and its derivatives as highly efficient polymer ligands. Molecules 21:330–365

    PubMed  PubMed Central  Google Scholar 

  • Punniyamurthy T, Velusamy S, Iqbal J (2005) Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem Rev 105:2329–2363

    CAS  PubMed  Google Scholar 

  • Rinki K, Dutta PK, Hunt A, Macquarrie DJ, Clark JH (2011) Chitosan aerogels exhibiting high surface area for biomedical application: preparation, characterization, and antibacterial study. Int J Polym Mater 60:988–999

    CAS  Google Scholar 

  • Rooney J (2007) The role of thiols, dithiols, nutritional factors and interacting ligands in the toxicology of mercury. Toxicology 234:145–156

    CAS  PubMed  Google Scholar 

  • Salhi B, Vaurette F, Grandidier B, Stievenard D, Melnyk O, Coffinier Y, Boukherroub R (2009) The collagen assisted self-assembly of silicon nanowires. Nanotechnology 20:235601–235607

    PubMed  Google Scholar 

  • Takeshita S, Yoda S (2018) Upscaled preparation of trimethylsilylated chitosan aerogel. Ind Eng Chem Res 57:10421–10430

    CAS  Google Scholar 

  • Varma AJ, Deshpande SV, Kennedy JF (2004) Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym 55:77–93

    CAS  Google Scholar 

  • Wolfson A, Wuyts S, De Vos DE, Vankelecom IFJ, Jacobs PA (2002) Aerobic oxidation of alcohols with ruthenium catalysts in ionic liquids. Tetrahedron Lett 43:8107–8110

    CAS  Google Scholar 

  • Yamaguchi K, Mizuno N (2002) Supported ruthenium catalyst for the heterogeneous oxidation of alcohols with molecular oxygen. Angew Chem Int Ed 14:4720–4724

    Google Scholar 

  • Yang J, Xia Y, Xu P, Chen B (2018) Super-elastic and highly hydrophobic/superoleophilic sodium alginate/cellulose aerogel for oil/water separation. Cellulose 25:3533–3544

    CAS  Google Scholar 

  • Yang WJ, Chun Yin Yuen A, Li A, Lin B, Bo Yuan Chen T, Yang W, Lu HD, Heng Yeoh G (2019) Recent progress in bio-based aerogel absorbents for oil/water separation. Cellulose 26:6449–6476

    CAS  Google Scholar 

  • Zeng XM, Chen JM, Yoshimura A, Middleton K, Zhdankin VV (2011) SiO2-supported RuCl3/3-(dichloroiodo)benzoic acid: green catalytic system for the oxidation of alcohols and sulfides in water. RSC Adv 1:973–977

    CAS  Google Scholar 

  • Zhang C, Zhang H, Li R, Xing Y (2017) Morphology and adsorption properties of chitosan sulfate salt microspheres prepared by a microwave-assisted method. RSC Adv 7:48189–48198

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the facilities provided by Kuwait University through projects GS 01/05, GS 03/01, GS 01/03 and GE 01/07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal Al-Azmi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 474 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Azmi, A., Keshipour, S. Dimaval as an efficient ligand for binding Ru(III) on cross-linked chitosan aerogel: synthesis, characterisation and catalytic investigation. Cellulose 27, 895–904 (2020). https://doi.org/10.1007/s10570-019-02838-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02838-7

Keywords

Navigation