Skip to main content
Log in

Electrically conductive polyacrylamide/carbon nanotube hydrogel: reinforcing effect from cellulose nanofibers

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The development of polymeric hydrogels with new functionalities is becoming an aspiration in various fields. Here we report a simple method to fabricate a conductive polyacrylamide (PAM)-based hydrogel by the incorporation of carbon nanorubes (CNTs). However, the major challenge for these hydrogels is CNT aggregation in PAM, which decreases both mechanical and electrical properties of the composite hydrogels. Inclusion of cellulose nanofibers (CNFs), is expected to disperse the CNTs well, thereby reinforcing the PAM hydrogels. Hence, by mixing the CNFs and CNTs in the AM hybrid solutions, a PAM/CNF/CNT composite hydrogel is prepared through in situ polymerization. Specifically, with incorporation of 1 wt% CNF and 1 wt% CNT into PAM, the PAM/CNF/CNT-1 hydrogel, with an electrical conductivity of 8.5 × 10−4 S/cm, shows a threefold higher fracture tensile strength than the pure PAM hydrogel. Given the improved mechanical properties and electrical conductivity, the use of CNF as a reinforcing agent for both PAM and CNT provide a versatile method to fabricate conductive hydrogels, and has potential to expand their application in the field of bio-medical engineering and electrical devices.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdul Rashid ES, Muhd Julkapli N, Yehye WA (2018) Nanocellulose reinforced as green agent in polymer matrix composites applications. Polym Adv Technol 29:1531–1546

    Article  CAS  Google Scholar 

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromol 8:3276–3278

    Article  CAS  Google Scholar 

  • Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Li D, Abe K, Yano H (2018a) Formation of high strength double-network gels from cellulose nanofiber/polyacrylamide via NaOH gelation treatment. Cellulose 25(9):5089–5097

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Lee SY, Wei T, Li J, Fan Z (2018b) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47:2837–2872

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Li D, Abe K, Yano H (2019a) Insect cuticle-mimetic hydrogels with high mechanical properties achieved via the combination of chitin nanofiber and gelatin. J Agric Food Chem 67(19):5571–5578

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Li D, Abe K, Yano H (2019b) Bioinspired hydrogels: quinone crosslinking reaction for chitin nanofibers with enhanced mechanical strength via surface deacetylation. Carbohyd Polym 207:411–417

    Article  CAS  Google Scholar 

  • De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631

    Article  CAS  Google Scholar 

  • Deligkaris K, Tadele TS, Olthuis W, van den Berg A (2010) Hydrogel-based devices for biomedical applications. Sens Actuators B Chem 147:765–774

    Article  CAS  Google Scholar 

  • Ding C, Cai C, Yin L, Wu Q, Pan M, Mei C (2019) Mechanically adaptive nanocomposites with cellulose nanocrystals: strain-field mapping with digital image correlation. Carbohyd Polym 211:11–21

    Article  CAS  Google Scholar 

  • Duan G, Fang H, Huang C, Jiang S, Hou H (2018) Microstructures and mechanical properties of aligned electrospun carbon nanofibers from binary composites of polyacrylonitrile and polyamic acid. J Mater Sci 53(21):15096–15106

    Article  CAS  Google Scholar 

  • Fei G, Wang Y, Wang H, Ma Y, Guo Q, Huang W, Yang D, Shao Y, Ni Y (2019) Fabrication of bacterial cellulose/polyaniline nanocomposite paper with excellent conductivity, strength, and flexibility. ACS Sustain Chem Eng 7:8215–8225

    Article  CAS  Google Scholar 

  • Fernandes RMF, Buzaglo M, Regev O, Furo I, Marques EF (2017) Mechanical agitation induces counterintuitive aggregation of pre-dispersed carbon nanotubes. J Colloid Interface Sci 493:398–404

    Article  CAS  PubMed  Google Scholar 

  • Fu LH, Qi C, Ma MG, Wan P (2019) Multifunctional cellulose-based hydrogels for biomedical applications. J Mater Chem B 7:1541–1562

    Article  CAS  Google Scholar 

  • Gao S, Tang G, Hua D, Xiong R, Han J, Jiang S et al (2019) Stimuli-responsive bio-based polymeric systems and their applications. J Mater Chem B 7:709–729

    Article  CAS  Google Scholar 

  • Hamedi MM, Hajian A, Fall AB, HaKansson K, Salajkova M, Lundell F et al (2014) Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano 8(3):2467–2476

    Article  CAS  PubMed  Google Scholar 

  • Hosseini H, Kokabi M, Mousavi SM (2018) Conductive bacterial cellulose/multiwall carbon nanotubes nanocomposite aerogel as a potentially flexible lightweight strain sensor. Carbohyd Polym 201:228–235

    Article  CAS  Google Scholar 

  • Koga H, Saito T, Kitaoka T, Nogi M, Suganuma K, Isogai A (2013) Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromol 14:1160–1165

    Article  CAS  Google Scholar 

  • Kumar A, Rao KM, Han SS (2018) Mechanically viscoelastic nanoreinforced hybrid hydrogels composed of polyacrylamide, sodium carboxymethylcellulose, graphene oxide, and cellulose nanocrystals. Carbohyd Polym 193:228–238

    Article  CAS  Google Scholar 

  • Li M-C, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3:821–832

    Article  CAS  Google Scholar 

  • Li M-C, Wu Q, Song K, Cheng HN, Suzuki S, Lei T (2016) Chitin nanofibers as reinforcing and antimicrobial agents in carboxymethyl cellulose films: influence of partial deacetylation. ACS Sustain Chem Eng 4:4385–4395

    Article  CAS  Google Scholar 

  • Liu Y, Kumar S (2014) Polymer/carbon nanotube nano composite fibers—a review. ACS Appl Mater Interfaces 6:6069–6087

    Article  CAS  PubMed  Google Scholar 

  • Liu YJ, Cao WT, Ma MG, Wan P (2017) Ultrasensitive wearable soft strain sensors of conductive, self-healing, and elastic hydrogels with synergistic “soft and hard” hybrid networks. ACS Appl Mater Interfaces 9:25559–25570

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Stupp SI, Olvera de la Cruz M (2018) Anisotropic contraction of fiber-reinforced hydrogels. Soft Matter 14:7731–7739

    Article  CAS  PubMed  Google Scholar 

  • Pramanik C, Nepal D, Nathanson M, Gissinger JR, Garley A, Berry RJ, Davijani A, Kumar S, Heinz H (2018) Molecular engineering of interphases in polymer/carbon nanotube composites to reach the limits of mechanical performance. Compos Sci Technol 166:86–94

    Article  CAS  Google Scholar 

  • Tang Y, He Z, Mosseler JA, Ni Y (2014) Production of highly electro-conductive cellulosic paper via surface coating of carbon nanotube/graphene oxide nanocomposites using nanocrystalline cellulose as a binder. Cellulose 21:4569–4581

    Article  CAS  Google Scholar 

  • Xu ZY, Li JY (2018) Enhanced swelling, mechanical and thermal properties of cellulose nanofibrils (CNF)/poly(vinyl alcohol) (PVA) hydrogels with controlled porous structure. J Nanosci Nanotechnol 18:668–675

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Yu W, Jing M, Huang R, Zhang Q, Fu Q (2017) Largely enhanced stretching sensitivity of polyurethane/carbon nanotube nanocomposites via incorporation of cellulose nanofiber. J Phys Chem C 121:2108–2117

    Article  CAS  Google Scholar 

  • Xu CY, Shi XM, Guo L, Wang X, Wang XY, Li JY (2018a) Optimization of graphene conductive ink with 73 wt% graphene contents. J Nanosci Nanotechnol 18(6):4014–4021

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Jiang X, Tan S, Wu W, Shi J, Zhou H, Chen P (2018b) Preparation and characterisation of CNF/MWCNT carbon aerogel as efficient adsorbents. IET Nanobiotechnol 12:500–504

    Article  PubMed  Google Scholar 

  • Yang J, Han C-R, Zhang X-M, Xu F, Sun R-C (2014) Cellulose nanocrystals mechanical reinforcement in composite hydrogels with multiple cross-links: correlations between dissipation properties and deformation mechanisms. Macromolecules 47:4077–4086

    Article  CAS  Google Scholar 

  • Yang J, Xie H, Chen H, Shi Z, Wu T, Yang Q, Xiong C (2018) Cellulose nanofibril/boron nitride nanosheet composites with enhanced energy density and thermal stability by interfibrillar cross-linking through Ca2+. J Mater Chem A 6:1403–1411

    Article  CAS  Google Scholar 

  • Zhang D, Cai J, Xu W, Dong Q, Li Y, Liu G, Wang Z (2019) Synthesis, characterization and adsorption property of cellulose nanofiber-based hydrogels. J For Eng 4(02):92–98

    Google Scholar 

  • Zhou S, Zhou G, Jiang S, Fan P, Hou H (2017) Flexible and refractory tantalum carbide–carbon electrospun nanofibers with high modulus and electric conductivity. Mater Lett 200:97–100

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (NSFC 31901254, 31670555), Natural Science Foundation of Jiangsu Province (CN) (BK20170925), Innovation Fund for Young Scholars of Nanjing Forestry University (CX 2017001), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuchu Chen or Dagang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Wang, Y., Meng, T. et al. Electrically conductive polyacrylamide/carbon nanotube hydrogel: reinforcing effect from cellulose nanofibers. Cellulose 26, 8843–8851 (2019). https://doi.org/10.1007/s10570-019-02710-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02710-8

Keywords

Navigation