Skip to main content
Log in

Suitability of chitosan nanoparticles as cryoprotectant on shelf life of restructured fish surimi during chilled storage

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The present study investigated chitosan nanoparticle (CS-TPP NPs) preparation by ionic gelation process with chitosan (CS) and tripolyphosphate (TPP). The structural characterization of nanoparticles was studied using Dynamic Light Scattering, Nuclear Magnetic Resonance, Fourier Transform Infrared (FTIR) and X-Ray Diffraction spectroscopies. FTIR spectra confirmed that the tripolyphosphoric groups of TPP linked with ammonium groups of CS in the prepared nanoparticles. CS-TPP NPs exhibited higher antioxidant activity and an interesting antimicrobial potential. In fact, there was no report available in literature on using CS nanoparticles for the surimi preservation. Further, data revealed that nanoparticle incorporation in fish surimi effectively inhibited thiobarbituric acid substances and conjugated dienes formation, and thereby, retarding lipid oxidation. Results showed that CS-TPP NPs were able to hinder fish surimi myoglobin oxidation with a significant improvement in the transformation of Heme iron. In addition, CS nanoparticles exhibited a distinguishable antimicrobial activity in the stored surimi during cold storage of 9 days. Thus, nanoparticles could be used as a natural ingredient to prevent lipid oxidation in surimi based food systems for the development of novel healthy fish products and addresses consumer demands for functional fish products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akmaz S, AdJgüzel ED, Yasar M, Erguven O (2013) The effect of Ag content of the chitosan-silver nanoparticle nomposite material on the structure and antibacterial activity. Adv Mater Sci Eng. Article ID 690918, 6

  • Ali WS, Joshi M, Rajendran S (2010) Modulation of size, shape and surface charge of chitosan nanoparticles with reference to antimicrobial activity. Adv Sci Lett 3:452–460

    Article  CAS  Google Scholar 

  • Alishahi A, Mirvaghefi A, Tehrani MR, Farahmand H, Shojaosadati SA, Dorkoosh FA, Elsabee MZ (2011) Shelf life and delivery enhancement of vitamin C using chitosan nanoparticles. Food Chem 126:935–940

    Article  CAS  Google Scholar 

  • Anraku M, Fujii T, Furutani N, Kadowaki D, Maruyama T, Otagiri M, Gebicki JM, Tomida H (2009) Antioxidant effects of a dietary supplement: reduction of indices of oxidative stress in normal subjects by water-soluble chitosan. Food Chem Toxicol 47:104–109

    Article  CAS  PubMed  Google Scholar 

  • Arulmozhi V, Pandian K, Mirunalini S (2013) Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB). Colloids Surf B 110:313–320

    Article  CAS  Google Scholar 

  • Barbi MS, Carvalho FC, Kiill CP, Barud HS, Santagneli SH, Ribeiro SJL, Gremião MPD (2015) Preparation and characterization of chitosan nanoparticles for zidovudine nasal delivery. Nanosci Nanotechnol 15:865–874

    Article  CAS  Google Scholar 

  • Benjakul S, Bauer F (2001) Biochemical and physicochemical changes in catfish muscle as influenced by different freeze-thaw cycles. Food Chem 72:207–217

    Article  CAS  Google Scholar 

  • Bertrand N, Wu J, Xu X, Kamaly N, Farokhad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25

    Article  CAS  PubMed  Google Scholar 

  • Calero N, Munoz J, Ramirez P, Guerrero A (2010) Flow behaviour, linear viscoelasticity and surface properties of chitosan aqueous solutions. Food Hydrocoll 24:659–666

    Article  CAS  Google Scholar 

  • Calvo P, Remunan Lopez C, Vila Jato JL, Alonso MJ (1997) Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63:125–132

    Article  CAS  Google Scholar 

  • Chaijan M, Benjakul S, Visessanguan W, Faustman C (2004) Characteristics and gel properties of muscles from sardine (Sardinella gibbosa) and mackerel (Rastrelliger kanagurta) caught in Thailand. Food Res Int 37:1021–1030

    Article  CAS  Google Scholar 

  • Chaijan M, Benjakul S, Visessanguan W, Faustman C (2005) Changes of pigments and colour in sardine (Sardinella gibbosa) and mackerel (Rastrelliger kanagurta) muscle during iced storage. Food Chem 93:607–617

    Article  CAS  Google Scholar 

  • Chaijan M, Benjakul S, Visessanguan W, Faustman C (2006) Changes of lipids in sardine (Sardinella gibbosa) muscle during iced storage. Food Chem 99:83–91

    Article  CAS  Google Scholar 

  • Chaijan M, Panpipat W, Benjakul S (2010) Physicochemical properties and gel-forming ability of surimi from three species of mackerel caught in Southern Thailand. Food Chem 121:85–92

    Article  CAS  Google Scholar 

  • Chen HH (2002) Decoloration and gel-forming ability of horse mackerel mince by air-flotation washing. J Food Sci 67:2970–2975

    Article  CAS  Google Scholar 

  • Chi CF, Hu FY, Wang B, Ren XJ, Deng SG, Wu CW (2015) Purification and characterization of three antioxidant peptides from protein hydrolyzate of croceine croaker (Pseudosciaena crocea) muscle. Food Chem 168:662–667

    Article  CAS  PubMed  Google Scholar 

  • Chuah LH, Billa N, Roberts CJ, Burley JC, Manickam S (2011) Curcumin-containing chitosan nanoparticles as a potential mucoadhesive delivery system to the colon. Pharm Dev Technol 18:591–599

    Article  CAS  PubMed  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262

    Article  CAS  Google Scholar 

  • Coelho G, Weschenfelder Â, Meinert E, Amboni R, Beirão LH (2007) Effects of starch properties on textural characteristics of fish burgers: sensory and instrumental approaches. Boletim Centro de Pesquisa de Processamento de Alimentos 25:37–50

    CAS  Google Scholar 

  • Colmenero FJ, Barreto G, Fernández P, Carballo J (1996) Frozen storage of bologna sausages as a function of fat content and of levels of added starch and egg white. Meat Sci 42:325–332

    Article  CAS  PubMed  Google Scholar 

  • Darmadji P, Izumimoto M (1994) Effect of chitosan in meat preservation. Meat Sci 38:243–254

    Article  CAS  PubMed  Google Scholar 

  • de Pinho Neves AL, Milioli CC, Müller L, Riella HG, Kuhnen NC, Stulzer HK (2014) Factorial design as tool in chitosan nanoparticles development by ionic gelation technique. Colloids Surf A Physicochem Eng Asp 445:34–39

    Article  CAS  Google Scholar 

  • Dey SS, Dora KC, Raychaudhuri U, Ganguly S (2013) Cryoprotective effect of shrimp waste protein hydrolysate on croaker surimi protein and gel characteristics during frozen storage. Fish Technol 50:50–59

    CAS  Google Scholar 

  • Divya K, Jisha MS (2017) Chitosan nanoparticles preparation and applications. Environ Chem Lett 16:101–112

    Article  CAS  Google Scholar 

  • Divya K, Vijayan S, Jisha MS (2018) Antifungal, antioxidant and cytotoxic activities of chitosan nanoparticles and its use as an edible coating on vegetables. Int J Biol Macromol 114:572–577

    Article  CAS  PubMed  Google Scholar 

  • Du WL, Niu SS, Xu YL, Xu ZR, Fan CL (2009) Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydr Polym 75:385–389

    Article  CAS  Google Scholar 

  • Dudhani AR, Kosaraju SL (2010) Bioadhesive chitosan nanoparticles: preparation and characterization. Carbohydr Polym 81:243–251

    Article  CAS  Google Scholar 

  • Esterbauer H, Cheeseman KH, Dianzani MU, Poli G, Slater TI (1982) Separation andcharacterization of the aldehydic products of lipid peroxidation stimulated by ADP Fe2+in rat liver microsomes. Biochem J 208:129–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Kim SO (2004) Physicochemical and functional properties of crawfish chitosan as affected by different processing protocols. Thesis

  • Georgantelis D, Ambrosiadis I, Katikou P, Blekas G, Georgakis SA (2007) Effect of rosemary extract, chitosan and α-tocopherol onmicrobiological parameters and lipid oxidation of fresh pork sausages stored at 4 °C. Meat Sci 76:172–181

    Article  CAS  Google Scholar 

  • Gilbert RJ, de Louvois J, Donovan T, Little C, Nye K, Ribeiro CD, Richards J, Roberts D, Bolton FJ (2000) Guidelines for the microbiological quality of some ready-to-eat foods sampled at the point of sale. PHLS advisory committee for food and dairy products. Commun Dis Public Health 3:163–167

    CAS  PubMed  Google Scholar 

  • Gomez-Basauri JV, Regenstein JM (1992) Vacuum packaging, ascorbic acid and frozen storage effects on Heme and Nonheme iron content of Mackerel. J Food Sci 57:1337–1339

    Article  CAS  Google Scholar 

  • Gu HW, Ho PL, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3:1261–1263

    Article  CAS  Google Scholar 

  • Haard NF (1992) Biochemistry and chemistry of color and color change in seafoods. Advances in Seafood Biochemistry. Technomic Publishing Co, Inc, Lancester, Penn Sylvania, pp 312–319

    Google Scholar 

  • Hajji S, Younes I, Ghorbel-Bellaaj O, Hajji R, Rinaudo M, Nasri M, Jellouli K (2014) Structural differences between chitin and chitosan extracted from three different marine sources. Int J Biol Macromol 65:298–306

    Article  CAS  PubMed  Google Scholar 

  • Hamdi M, Hajji S, Affes S, Taktak W, Maâlej H, Nasri M, Nasri R (2017) Development of a controlled bioconversion process for the recovery of chitosan from blue crab (Portunus segnis) exoskeleton. Food Hydrocoll 101:455–463

    CAS  Google Scholar 

  • Hansen LJ, Sereika HE (1969) Factors affecting color stability of prepackaged frozen fresh beef in display cases. Illum Eng 64:620–624

    Google Scholar 

  • Hebeish A, Sharaf S, Farouk A (2013) Utilization of chitosan nanoparticles as a green finish in multifunctionalization of cotton textile. Int J Biol Macromol 60:10–17

    Article  CAS  PubMed  Google Scholar 

  • Horita CN, Morgano MA, Celeghini RMS, Pollonio MAR (2011) Physicochemical and sensory properties of reduced-fat mortadella prepared with blends of calcium, magnesium and potassium chloride as partial substitutes for sodium chloride. Meat Sci 89:426–433

    Article  CAS  PubMed  Google Scholar 

  • Hosseini SF, Rezaei M, Zandi M, Farahmandghavi F (2015) Fabrication of bio-nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocoll 44:172–182

    Article  CAS  Google Scholar 

  • Hosseini SF, Soleimani MR, Nikkhah M (2018) Chitosan/sodium tripolyphosphate nanoparticles as efficient vehicles for antioxidant peptidic fraction from common kilka. Int J Biol Macromol 111:730–737

    Article  CAS  PubMed  Google Scholar 

  • Huang ZM, Zhang Y, Kotaki M, Ramakrishnaj S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253

    Article  CAS  Google Scholar 

  • Jingou J, Shilei H, Weiqi L, Danjun W, Tengfei W, Yi X (2011) Preparation, characterization of hydrophilic and hydrophobic drug in combine loaded chitosan/cyclodextrin nanoparticles and in vitro release study. Colloids Surf B 83:103–107

    Article  CAS  Google Scholar 

  • Jung KH, Lee JH, Park JW, Quach HT, Moon SH, Cho YS, Lee KH (2015) Resveratrol-loaded polymeric nanoparticles suppress glucose metabolism and tumor growth in vitro and in vivo. Int J Pharm 478:251–257

    Article  CAS  PubMed  Google Scholar 

  • Kafshgari MH, Khorram M, Mansouri M, Samimi A, Osfouri S (2012) Preparation of alginate and chitosan nanoparticles using a new reverse micellar system. Iran Polym J 21:99–107

    Article  CAS  Google Scholar 

  • Kanatt SR, Chander R, Sharma A (2008) Chitosan and mint mixture: a new preservative for meat and meat products. Food Chem 107:845–852

    Article  CAS  Google Scholar 

  • Kaya M, Mujtaba M, Ehrlich H, Salaberria AM, Baran T, Amemiya CT, Galli R, Akyuz L, Sargin I, Labidi J (2017) On chemistry of γ-chitin. Carbohydr Polym 176:177–186

    Article  CAS  PubMed  Google Scholar 

  • Ke PJ, Cervantes E, Robles-Martinez C (1984) Determination of thiobarbituric acid reactive substances (TBARS) in fish tissue by an improved distillation spectrophotometric method. J Sci Food Agric 35:1248–1254

    Article  CAS  Google Scholar 

  • Kim DG, Jeong YI, Choi C, Roh SH, Kang SK, Jang MK, Nah JW (2006) Retinol-encapsulated low molecular water-soluble chitosan nanoparticles. Int J Pharm 319:130–138

    Article  CAS  PubMed  Google Scholar 

  • Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, Cho CS (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26:1–21

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kim SI, Kwon IB, Kim MH, Lim JI (2013) Simple fabrication of silver hybridized porous chitosan-based patch for transdermal drug-delivery system. Mater Lett 95:48–51

    Article  CAS  Google Scholar 

  • Koleva II, Van Beek TA, Linssen JPH, De Groot A, Evstatieva LN (2002) Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochem Anal 13:8–17

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Joo ST, Alderton AL, Hill DW, Faustman C (2003) Oxymyoglobin and lipid oxidation in yellow fin tuna (Thunnus albacares) loins. J Food Sci 68:1664–1668

    Article  CAS  Google Scholar 

  • León FJC, Lizardi-Mendoza J, Arguelles-Monal W, Carvajal-Millan E, Lopez Franco YL, Goycoolea FM (2017) Supercritical CO2 dried chitosan nanoparticles: production and characterization. RSC Adv 7:30879–30885

    Article  Google Scholar 

  • Li Y, Song H, Xiong S, Tian T, Liu T, Sun Y (2005a) Chitosan-stablized bovine serum albumin nanoparticles having ability to control the release of NELL-1 protein. Int J Biol Macromol 109:672–680

    Article  CAS  Google Scholar 

  • Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M (2005b) Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26:3919–3928

    Article  CAS  PubMed  Google Scholar 

  • Maciel VBV, Yoshida CMP, Pereira SMSS, Goycoolea FM, Franco TT (2017) Electrostatic self-assembled chitosan-pectin nano- and microparticles for insulin delivery. Molecules 22:1707

    Article  CAS  PubMed Central  Google Scholar 

  • Mao L, Wu T (2007) Gelling properties and lipid oxidation of kamaboko gels from grass carp (Ctenopharyngodon idellus) influenced by chitosan. J Food Eng 82:128–134

    Article  CAS  Google Scholar 

  • Meshkini S, Tafy AA, Tukmechi A, Farhang-Pajuh F (2012) Effects of chitosan on hematological parameters and stress resistance in rainbow trout (Oncorhynchus mykiss). Vet Res Forum 3:49–54

    PubMed  PubMed Central  Google Scholar 

  • Nallamuthu I, Devi A, Khanum F (2015) Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian J Pharm Sci 10:203–211

    Article  Google Scholar 

  • Nguyen TV, Nguyen TTH, Wang SL, Khanh Vo TP, Nguyen AD (2017) Preparation of chitosan nanoparticles by TPP ionic gelation combined with spray drying, and the antibacterial activity of chitosan nanoparticles and a chitosan nanoparticle–amoxicillin complex. Res Chem Intermed 43:3527–3537

    Article  CAS  Google Scholar 

  • Nishimura T (2010) The role of intramuscular connective tissue in meat texture. Animal Sci J 81:21–27

    Article  Google Scholar 

  • Ochiai Y, Ochiai L, Hashimoto K, Watabe S (2001) Quantitative estimation of dark muscle content in the mackerel meat paste and its products using antisera against myosin light chains. J Food Sci 66:1301–1305

    Article  CAS  Google Scholar 

  • Ocloo FCK, Quayson ET, Adu-Gyamfi A, Quarcoo EA, Asare D, Serfor Armah Y, Woode BK (2011) Physicochemical and functional characteristics of radiation-processed shrimp chitosan. J Radiat Phys Chem 80:837–841

    Article  CAS  Google Scholar 

  • Phromsopha T, Baimark Y (2010) Chitosan microparticles prepared by the water-in-oil emulsion solvent diffusion method for drug delivery. Biotechnology 9:61–66

    Article  CAS  Google Scholar 

  • Piyakulawat P, Praphairaksit N, Chantarasiri N, Muangsin N (2007) Preparation and evaluation of chitosan/carrageenan beads for controlled release of sodium diclofenac. AAPS Pharm Sci Technol 8:120–130

    Article  Google Scholar 

  • Plainsirichai M, Leelaphatthanapanich S, Wongsachai N (2014) Effect of chitosan on the quality of rose apples (Syzygium Agueum Alston) cv. Tabtim Chan stored at an ambient temperature. APCBEE Proc 8:317–322

    Article  CAS  Google Scholar 

  • Postnikova GB, Tselikova SV, Kolaeva SG, Solomonov NG (1999) Myoglobin content in skeletal muscles of hibernating ground squirrels rises in autumn and winter. Comp Biochem Physiol Part B 124:35–37

    Article  CAS  Google Scholar 

  • Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700

    Article  CAS  PubMed  Google Scholar 

  • Rajalekshmi M, Mathew PT (2007) Colour and textural parameters of threadfin bream surimi during frozen storage as affected by cryoprotectants and chitosan. Fish Technol 44:55–64

    CAS  Google Scholar 

  • Rodrigues S, Costa AM, Grenha A (2012) Chitosan/carrageenan nanoparticles: effect of cross-linking with tripolyphosphate and charge ratios. Carbohydr Polym 89:282–289

    Article  CAS  PubMed  Google Scholar 

  • Rokhade AP, Agnihotri SA, Patil SA, Mallikarjuna NN, Kulkarni PV, Aminabhavi TM (2006) Semi-interpen etrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydr Polym 65:243–252

    Article  CAS  Google Scholar 

  • Ruan S, Yuan M, Zhang L, Hu G, Chen J, Cun X, Gao H (2015) Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials 37:425–435

    Article  CAS  PubMed  Google Scholar 

  • Shahidi F, Arachchi JKV, Jeon YJ (1999) Food applications of chitin and chitosans. Trends Food Sci Technol 10:37–51

    Article  CAS  Google Scholar 

  • Tokumitsu H, Ichikawa H, Fukumori Y (1999) Chitosan-gadopentetic acid complex. Nanoparticles for gadolinium neutron-capture therapy of cancer: preparation by novel emulsion-droplet coalescence technique and characterization. Pharm Res 16:1830–1835

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos F, Cristol S, Paul JF, Tricot GG, Amoureux JP, Montagne L, Mauri F, Delevoye L (2008) 17O solid-state NMR and first-principles calculations of sodium trimetaphosphate (Na3P3O9), tripolyphosphate (Na5P3O10) and pyrophosphate (Na4P2O7). Inorg Chem 47:7327–7337

    Article  CAS  PubMed  Google Scholar 

  • Viji P, Tanuja S, Ninan G, Zynudheen AA, Lalitha KV (2014) Quality characteristics and shelf life of sutchi cat fish (Pangasianodon hypophthalmus) steaks during refrigerated storage. Int J Agric Food Sci Technol 5:105–116

    Google Scholar 

  • Wang YF, Huang SR, Shao SH, Qian L, Xu P (2012) Studies on bioactivities of tea (Camellia sinensis L.) fruit peel extracts: antioxidant activity and inhibitory potential against α-glucosidase and α-amylase in vitro. Ind Crops Prod 37:520–526

    Article  CAS  Google Scholar 

  • Yang HC, Wang WH, Huang KS, Hon MH (2010) Preparation and application of nanochitosan to finishing treatment with anti-microbial and anti-shrinking properties. Carbohydr Polym 79:176–179

    Article  CAS  Google Scholar 

  • Yen GC, Wu J (1999) Antioxidant and radical scavenging properties of extracts from Ganoderma tsugae. Food Chem 65:375–379

    Article  CAS  Google Scholar 

  • Yildirim A, Mavi A, Kara AA (2001) Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J Agric Food Chem 49:4083–4089

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from Ministry of Higher Education and Scientific Research of Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sawssen Hajji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajji, S., Hamdi, M., Boufi, S. et al. Suitability of chitosan nanoparticles as cryoprotectant on shelf life of restructured fish surimi during chilled storage. Cellulose 26, 6825–6847 (2019). https://doi.org/10.1007/s10570-019-02555-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02555-1

Keywords

Navigation