Skip to main content
Log in

Controllable synthesis uniform spherical bacterial cellulose and their potential applications

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Engineering nanocellulose based material through the bottom-up approach has addressed great attention. Bacterial cellulose synthesis in nature follows this concept, but it is challenging to control its morphology. In this study, various bacterial culturing parameters were assessed with the goal of assembling uniform spherical bacterial cellulose (SBC) which has advantages owing to its unique morphology and increased surface areas. The potential activation/modification of the synthesized SBC was also explored by using TEMPO-mediated oxidization and iron-induced magnetization. Our results showed that the uniform SBC was synthesized when the ratio of culture medium to flask volumes (M/F value) was kept at 50%, while the diameter of these uniform SBC could be adjusted by changing the agitation speed and flask volume. The SBC could be further TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) oxidized and iron-induced magnetized without sacrificing its spherical morphology and cellulose properties (e.g. crystallinity and degree of polymerization), which significantly improved their metal absorbability and recyclability. Our results open the door for the SBC production and application.

Graphical abstract

Schematic illustration of controllable biosynthesis of spherical bacterial cellulose (SBC), preparation of activated spherical bacterial cellulose (ASBC) and magnetic activated spherical bacterial cellulose (MASBC): a controllable biosynthesis of SBC; b Activating of SBC by TEMPO-media oxidation; c Magnetization of ASBC; d MASBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abeer MM, Amin MCIM, Martin C (2014) A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol 66:1047–1061

    CAS  PubMed  Google Scholar 

  • Aliabadi M, Irani M, Ismaeili J, Piri H, Parnian M (2013) Electrospun nanofiber membrane of PEO/chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution. Chem Eng J 220:237–243

    Article  CAS  Google Scholar 

  • Alslaibi TM, Abustan I, Ahmad MA, Foul AA (2013) Kinetics and equilibrium adsorption of iron (II), lead (II), and copper (II) onto activated carbon prepared from olive stone waste. Desalin Water Treat 52:7887–7897

    Article  Google Scholar 

  • Amin MCIM, Ahmad N, Halib N, Ahmad I (2012) Synthesis and characterization of thermo- and ph-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88:465–473

    Article  Google Scholar 

  • Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson B, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 2006(27):2141–2149

    Article  Google Scholar 

  • Bi J-C, Liu S-X, Li C-F, Li J, Liu L-X, Deng J, Yang Y-CJ (2014) Morphology and structure characterization of bacterial celluloses produced by different strains in agitated culture. Appl Microbiol 117:1305–1311

    Article  CAS  Google Scholar 

  • Bottan S, Robotti F, Jayathissa P, Hogglin A, Bahamonde N, Heredia-Guerrero JA, Bayer I, Scarpellini A, Merker H, Lindenblatt N (2015) Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB). ACS Nano 9:206–219

    Article  CAS  Google Scholar 

  • Chandra R, Ewanick S, Hsieh C, Saddler J (2008) The Characterization of pretreated lignocellulosic substrates prior to enzymatic hydrolysis, part 1: a modified Simons’ Staining technique. Biotechnol Progres 24:1178–1185

    Article  CAS  Google Scholar 

  • Chen LF, Huang ZH, Liang HW, Guan QF, Yu SH (2013) Bacterial-cellulose-derived carbon nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density. Adv Mater 25:4746–4752

    Article  CAS  Google Scholar 

  • Chen MY, Kang HL, Gong YM, Guo J, Zhang H, Liu RG (2015) Bacterial cellulose supported gold nanoparticles with excellent catalytic properties. ACS Appl Mater Interfaces 7:21717–21726

    Article  CAS  Google Scholar 

  • Cheng M, Wang ZK, Lv Q, Li CL, Sun SQ, Hu SQ (2017) Preparation of amino-functionalized Fe3O4@mSiO2 core-shell magnetic nanoparticles and their application for aqueous Fe3+ removal. J Hazard Mater 341:198

    CAS  Google Scholar 

  • Crossgrove J, Zheng W (2004) Manganese toxicity upon overexposure. NMR Biomed 17:544–553

    Article  CAS  Google Scholar 

  • Fernandes SCM, Sadocco P, Aonso-Varona A, Palomares T, Eceiza A, Silvestre AJD, Mondragon I, Freire CSR (2013) Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl Mater Interfaces 5:3290–3297

    Article  CAS  Google Scholar 

  • Fu LN, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92:1432–1442

    Article  CAS  Google Scholar 

  • Gu J, Catchmark JM (2012) Hemicelluloses and pectin on spherical-like bacterial cellulose assembly. Carbohydr Polym 88:547–557

    Article  CAS  Google Scholar 

  • Hokkanen S, Repo E, Suopajärvi T, Liimatainen H, Niinimaa J, Sillanpää M (2014) Adsorption of Ni(II), Cu(II) And Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose 21:1471–1487

    Article  CAS  Google Scholar 

  • Hokkanen S, Bhatnagar A, Sillanpää M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173

    Article  CAS  Google Scholar 

  • Hu Y, Catchmark JM (2010a) Formation and characterization of spherical like bacterial cellulose particles produced by acetobacter xylinum JCM 9730 strain. Biomacromolecules 11:1727–1734

    Article  CAS  Google Scholar 

  • Hu Y, Catchmark JM (2010) Studies on spherical-like bacterial cellulose produced by acetobacter xylinum under agitated culture. In: ASABE annual international meeting, Pittsburgh, Pennsylvania, vol 6

  • Hu Y, Catchmark JM, Vogler EA (2013) Factors impacting the formation of spherical-like bacterial cellulose particles and their biocompatibility for human osteoblast growth. Biomacromolecules 14:3444–3452

    Article  CAS  Google Scholar 

  • Hu JG, Gourlay K, Arantes V, Van Dyk JS, Pribowo A, Saddler J (2015) The accessible cellulose surface influences cellulase synergism during the hydrolysis of lignocellulosic substrates. Chemsuschem 8:901–907

    Article  CAS  Google Scholar 

  • Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8:1973

    Article  CAS  Google Scholar 

  • Ifuku S, Tsuji M, Morimoto M, Saimoto H, Yano H (2009) Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers. Biomacromolecules 10:2714–2717

    Article  CAS  Google Scholar 

  • Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofiber. Nanoscale 3:71–85

    Article  CAS  Google Scholar 

  • Katz S, Beatson RP, Scallan AM (1984) The determination of strong and weak acidic groups in sulfite pulps. Svensk Papperstidn 87:48–53

    Google Scholar 

  • Lee H, Lee H, Sedlak D, Lee C (2013) Ph-dependent reactivity of oxidants formed by iron and copper-catalyzed decomposition of hydrogen peroxide. Chemospherical 92:652–658

    Article  CAS  Google Scholar 

  • Li Z, Ma Z, van der Kuijp TJ, Yuan Z, Huang L (2014) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468–469:843–853

    Article  Google Scholar 

  • Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013) Bacterial cellulose and bacterial cellulose—chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611

    Article  CAS  Google Scholar 

  • Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51

    Article  CAS  Google Scholar 

  • Meng CR, Li ZL, Wang CY, Yu CW (2016) Sustained-release alkali source used in the oxidation degumming of ramie. Text Res J 87:1155–1164

    Article  Google Scholar 

  • Mohite BV, Patil SV (2014) Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529. Carbohydr Polym 106:132

    Article  CAS  Google Scholar 

  • Morales-Narvaez E, Golmohammadi H, Naghdi T, Yousefi H, Kostiv U, Horak D, Pourreza N, Merkoci A, Morales-Narváez E, Golmohammadi H, Naghdi T, Yousefi H, Kostiv U, Horák D, Pourreza N, Merkoçi A (2015) Nanopaper as an optical sensing platform. ACS Nano 9:7296–7305

    Article  CAS  Google Scholar 

  • Olsson RT, Samir MASA, Salazar-Alvarez G, Belova L, Strom V, Berglund LA, Ikkala O, Nogues J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584–588

    Article  CAS  Google Scholar 

  • Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91:1277–1286

    Article  CAS  Google Scholar 

  • Phisalaphong M, Chiaoprakobkij N (2012) Applications and products—Nata de Coco Bacterial nanocellulose: a sophisticated multifunctional material. CRC Press, Boca Raton

    Google Scholar 

  • Pourreza N, Golmohammadi H, Naghdi T, Yousefi H (2015) Green in situ synthesized silver nanoparticles embedded in bacterial cellulose nanopaper as a bionanocomposite plasmonic sensor. Biosens Bioelectron 74:353–359

    Article  CAS  Google Scholar 

  • Quero F, Nogi M, Yano H, Abdulsalami K, Holmes SM, Sakakini BH, Eichhorn SJ (2010) The mechanical performance of bacterial cellulose/poly(l-Lactic) acid composites. ACS Appl Mater Interfaces 2:321–330

    Article  CAS  Google Scholar 

  • Rahman ML, Sarkar SM, Yusoff MM, Abdulah MH (2017) Optical detection and efficient removal of transition metal ions from water using poly(hydroxamic acid) ligand. Sensor Actuat B Chem 242:595

    Article  CAS  Google Scholar 

  • Russo V, Protasova L, Turco R, de Croon MHJM, Hessel V, Santacesaria E (2013) Hydrogen peroxide decomposition on manganese oxide supported catalyst: from batch reactor to continuous microreactor. Ind Eng Chem Res 52:7668–7676

    Article  CAS  Google Scholar 

  • Sai H, Fu R, Xing L, Xiang J, Li Z, Li F, Zhang T (2015) Surface modification of bacterial cellulose aerogels web-like skeleton for oil/water separation. ACS Appl Mater Interfaces 7:7373–7381

    Article  CAS  Google Scholar 

  • Shen W, Chen SY, Shi SK, Li X, Zhang X, Hu WL, Wang HP (2009) Adsorption of Cu(II) and Pb(II) onto diethylenetriamine-bacterial cellulose. Carbohydr Polym 75:110–114

    Article  CAS  Google Scholar 

  • Singh T, Singhal R (2013) Regenerable hydrogels based on poly(acrylic acid-sodium acrylate-acrylamide) modified by sodium humate for high removal of Pb2+and Fe2+ ions: metal adsorption kinetics and thermodynamic studies. Water Treat 52:5611–5628

    Article  Google Scholar 

  • Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan D, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431

    Article  CAS  Google Scholar 

  • Taba P, Budi P, Puspitasari AY (2017) Adsorption of heavy metals on amine-functionalized MCM-48. In: IOP conference series: materials science and engineering, vol 4

  • Tan G, Yuan H, Liu Y, Xiao D (2010) Removal of lead from aqueous solution with native and chemically modified corncobs. J Hazard Mater 174:740–745

    Article  CAS  Google Scholar 

  • Wang Q, Wei SQ, Huang YM (2008) Study of coordination mechanism of humic acid with Fe3+, Al3+, and Mn2+ with infrared spectroscopy. Acta Pedol Sin 45(2):366

    CAS  Google Scholar 

  • Wang W, Sun Y, Liu B, Wang SG, Cao MH (2015) Porous carbon nanofiber webs derived from bacterial cellulose as an anode for high performance lithium ion batteries. Carbon 91:56–65

    Article  CAS  Google Scholar 

  • Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200

    Article  CAS  Google Scholar 

  • Wu CN, Cheng KC (2016) Thermal-stable, flexible, and transparent films by self-assembled TEMPO-oxidized bacterial cellulose nanofibers. Cellulose 24:269–283

    Article  Google Scholar 

  • Wu SC, Lia YK (2008) Application of bacterial cellulose pellets in enzyme immobilization. J Mol Catal B-Enzym 54:103–108

    Article  CAS  Google Scholar 

  • Zhu HX, Jia SR, Yang HJ, Jia YY, Yan L, Li J (2011a) Preparation and application of bacterial cellulose spherical: a novel biomaterial. Biotechnol Biotechnol Equip Q 25:2233–2236

    Article  Google Scholar 

  • Zhu HX, Jia SR, Wan T, Jia YY, Yang HJ, Li J, Yan L, Zhong C (2011b) Biosynthesis of spherical Fe3O4/bacterial cellulose nanocomposites as adsorbents for heavy metal ions. Carbohydr Polym 86:1558–1564

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The innovation fund for graduate students in Donghua University: CUSF-DH-D-2016007. This research was undertaken thanks in part to funding from the Canada First Research Excellence Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinguang Hu or Jack N. Saddler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4356 kb)

Supplementary material 2 (GIF 2305 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, C., Hu, J., Gourlay, K. et al. Controllable synthesis uniform spherical bacterial cellulose and their potential applications. Cellulose 26, 8325–8336 (2019). https://doi.org/10.1007/s10570-019-02446-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02446-5

Keywords

Navigation