Skip to main content
Log in

Assessment of cellulose structural variety from different origins using near infrared spectroscopy

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Near infrared (NIR) spectroscopy was tested as a rapid monitor of cellulose features by analyzing structurally distinguishable cellulose from different organisms ranging from Monera to Plantae as well as Animalia. The optimal spectral region was first identified using intra-crystalline deuteration, and then statistically analyzed based on second derivative spectra by principal component analysis. The score plots clearly distributed the samples according to crystalline structure such as relative crystallinity and allomorphism. These characteristics and the corresponding loading factors provided key NIR absorption criteria for identifying structural properties, especially in bands at 6527 and 6383 cm−1, which correspond to Iα and Iβ, respectively. In addition, calibration models were created for relative cellulose crystallinity using partial least square regression and for allomorph ratios using simple absorption band shifts at 6476–6446 cm−1. NIR spectra of cellulose from various organisms combined with multivariate analysis can be used as a database for simple and rapid assessment of unknown cellulose materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278

    Article  CAS  Google Scholar 

  • Altaner CM, Horikawa Y, Sugiyama J, Javis MC (2014) Cellulose Iβ investigated by IR-spectroscopy at low temperatures. Cellulose 21(5):3171–3179

    Article  CAS  Google Scholar 

  • Atalla RH, Vanderhart DL (1984) Native cellulose—a composite of two distinct crystalline forms. Science 223:283–285

    Article  CAS  Google Scholar 

  • Belton PS, Tanner SF, Cartier N, Chanzy H (1989) High-resolution solid-state 13C nuclear magnetic-resonance spectroscopy of tunicin, an animal cellulose. Macromolecules 22:1615–1617

    Article  CAS  Google Scholar 

  • Fackler K, Schwanninger M (2010) Polysaccharide degradation and lignin modification during brown rot of spruce wood: a polarised fourier transform near infrared study. J Near Infrared Spectrosc 18:403–416

    Article  CAS  Google Scholar 

  • Hayashi N, Sugiyama J, Okano T, Ishihara M (1998) Selective degradation of the cellulose Iα component in Cladophora cellulose with Trichoderma viride cellulase. Carbohydr Res 305:109–116

    Article  Google Scholar 

  • Hideno A, Abe K, Uchimura H, Yano H (2016) Preparation by combined enzymatic and mechanical treatment and characterization of nanofibrillated cotton fibers. Cellulose 23:3639–3651

    Article  CAS  Google Scholar 

  • Horikawa Y, Sugiyama J (2008) Accessibility and size of Valonia cellulose microfibril studied by combined deuteration/rehydrogenation and FTIR technique. Cellulose 15:419–424

    Article  CAS  Google Scholar 

  • Horikawa Y, Imai T, Takada R, Watanabe T, Takabe K, Kobayashi Y, Sugiyama J (2011) Near-infrared chemometric approach to exhaustive analysis of rice straw pretreated for bioethanol conversion. Appl Biochem Biotech 164:194–203

    Article  CAS  Google Scholar 

  • Horikawa Y, Konakahara N, Imai T, Kentaro Abe, Kobayashi Y, Sugiyama J (2013) The structural changes in crystalline cellulose and effects on enzymatic digestibility. Polym Degrad Stabil 98:2351–2356

    Article  CAS  Google Scholar 

  • Horikawa Y, Imai M, Kanai K, Imai T, Watanabe T, Takabe K, Kobayashi Y, Sugiyama J (2015) Line monitoring by near-infrared chemometric technique for potential ethanol production from hydrothermally treated Eucalyptus globulus. Biochem Eng J 97:65–72

    Article  CAS  Google Scholar 

  • Horikawa Y, Imai T, Abe K, Sakakibara K, Tsujii Y, Mihashi A, Kobayashi Y, Sugiyama J (2016) Assessment of endoglucanase activity by analyzing the degree of cellulose polymerization and high-throughput analysis by near-infrared spectroscopy. Cellulose 23:1565–1572

    Article  CAS  Google Scholar 

  • Imai T, Sugiyama J (1998) Nanodomains of Iα and Iβ cellulose in algal microfibrils. Macromolecules 31:6275–6279

    Article  CAS  Google Scholar 

  • Imai T, Sugiyama J, Itoh T, Horii F (1999) Almost pure Iα cellulose in the cell wall of Glaucocystis. J Struct Biol 127:248–257

    Article  CAS  Google Scholar 

  • Inagaki T, Siesler HW, Mitsui K, Tsuchikawa S (2010) Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: a NIR spectroscopy and XRD study. Biomacromolecules 11:2300–2305

    Article  CAS  Google Scholar 

  • Kim N-H, Hearth W, Vuong R, Chanzy H (1996) The cellulose system in the cell wall of Micrasterias. J Struct Biol 117:195–203

    Article  CAS  Google Scholar 

  • Koyama M, Sugiyama J, Itoh T (1997) Systematic survey on crystalline features of algal celluloses. Cellulose 4:147–160

    Article  CAS  Google Scholar 

  • Larsson PT, Westermark U, Iversen T (1995) Determination of the cellulose Iα allomorph content in a tunicate cellulose by CP/MAS 13C-NMR spectroscopy. Carbohydr Res 278:339–343

    Article  CAS  Google Scholar 

  • Nagata T, Okada K, Takebe I, Matsui C (1981) Delivery of tobacco mosaic-virus RNA into plant-protoplasts mediated by reverse-phase evaporation vesicles (Liposomes). Mol Gen Genet 184:161–165

    CAS  Google Scholar 

  • Nakashima K, Nishino A, Horikawa Y, Hirose E, Sugiyama J, Satoh N (2011) The crystalline phase of cellulose changes under developmental control in a marine chordate. Cell Mol Life Sci 68:1623–1631

    Article  CAS  Google Scholar 

  • Nge TT, Sugiyama J (2007) Surface functional group dependent apatite formation on bacterial cellulose microfibrils network in a simulated body fluid. J Biomed Mater Res A 81A:124–134

    Article  CAS  Google Scholar 

  • Nishiyama Y, Isogai A, Okano T, Muller M, Chanzy H (1999) Intracrystalline deuteration of native cellulase. Macromolecules 32:2078–2081

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα, from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Article  CAS  Google Scholar 

  • Rambo MKD, Ferreria MMC (2015) Determination of cellulose crystallinity of banana residues using near infrared spectroscopy and multivariate analysis. J Braz Chem Soc 26:1491–1499

    CAS  Google Scholar 

  • Rodriguez-Saona LE, Fry FS, McLaughlin MA, Calvey EM (2001) Rapid analysis of sugars in fruit juices by FT-NIR spectroscopy. Carbohydr Res 336:63–74

    Article  CAS  Google Scholar 

  • Sarkar P, Bosneaga E, Auer M (2009) Plant cell walls throughout evolution: towards a molecular understanding of their design principles. J Exp Bot 60:3615–3635

    Article  CAS  Google Scholar 

  • Savitzky A, Golay MJE (1964) Smoothing+differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639

    Article  CAS  Google Scholar 

  • Sugiyama J, Vuong R, Chanzy H (1991a) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175

    Article  CAS  Google Scholar 

  • Sugiyama J, Persson J, Chanzy H (1991b) Combined infrared and electron-diffraction study of the polymorphism of native celluloses. Macromolecules 24:2461–2466

    Article  CAS  Google Scholar 

  • Tsekos I (1999) The sites of cellulose synthesis in algae: diversity and evolution of cellulose-synthesizing enzyme complexes. J Phycol 35:635–655

    Article  CAS  Google Scholar 

  • VanderHart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state 13C NMR. Macromolecules 17:1465–1472

    Article  CAS  Google Scholar 

  • Wada M, Okano T (2001) Localization of Iα and Iβ phases in algal cellulose revealed by acid treatments. Cellulose 8:183–188

    Article  CAS  Google Scholar 

  • Wada M, Sugiyama J, Okano T (1995) Two crystalline phase (Iα/Iβ) system of native celluloses in relation to plant phylogenesis. Mokuzai Gakkaishi 41:186–192

    CAS  Google Scholar 

  • Wada M, Okano T, Sugiyama J (1997) Synchroton-radiated X-ray and neutron diffraction study of native cellulose. Cellulose 4:221–232

    Article  CAS  Google Scholar 

  • Williams PC, Sobering DC (1993) Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. J Near Infrared Spectrosc 1:25–32

    Article  CAS  Google Scholar 

  • Wise L, Murphy M, D’Addieco A (1946) Chlorite holocellulose, its fractionation and beating on summative wood analysis and studies on the hemicelluloses. Pap Trade J 122:35–43

    CAS  Google Scholar 

Download references

Acknowledgments

I would like to express my grateful appreciation to Dr. J. Sugiyama of Kyoto University for the cellulose samples. I also thank Dr. S. Mizuno-Tazuru and Dr. K. Abe of Kyoto University for their technical support. This study was supported by the Japan Society for the Promotion of Science (JSPS) (KAKENHI Grant Numbers 15K18723, 17H03840, and 17K19283).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Horikawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horikawa, Y. Assessment of cellulose structural variety from different origins using near infrared spectroscopy. Cellulose 24, 5313–5325 (2017). https://doi.org/10.1007/s10570-017-1518-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1518-0

Keywords

Navigation