Skip to main content
Log in

Antimicrobial activity and controlled release of nanosilvers in bacterial cellulose composites films incorporated with montmorillonites

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) were synthesized by NaBH4 reduction and loaded in the dry-fabricated biofilm (DFBF) or the interlayer space of montmorillonite (MMT), generating AgNPs/DFBF or AgNPs/MMT composites, respectively. Use of NaBH4 at lower concentrations resulted in smaller the derived AgNPs, which exhibited superior antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Transmission electron microscopy images revealed conformation of AgNPs in DFBF and MMT with sizes of 20–160 and 2 nm, respectively. The results suggested that AgNPs were immobilized more firmly in MMT than in DFBF, which prevented the flocculation of AgNPs. The adsorption of AgNPs/MMT composites on DFBF resulted in the formation of AgNPs/MMT/DFBF composites, which further inhibited AgNPs migration. Furthermore, the silver release ratios of the AgNPs/DFBF, AgNPs/MMT, and AgNPs/MMT/DFBF composites were 6.7, 1.05, and 0.414% within 48 h, respectively. The minimum inhibitory concentration of silver in the medium for the AgNPs/MMT/DFBF composite against S. aureus was as low as 0.30 μg/mL; thus, AgNPs/MMT/DFBF composite films are suitable candidates for applications in sustained-release antimicrobial dressings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • An J, Zhang M, Wang S, Tang J (2008) Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT Food Sci Technol 41:1100–1107

    Article  CAS  Google Scholar 

  • Aruna JK, Arunachalam J (2011) Assessment of antibacterial activity of silver nanoparticles on Pseudomonas aeruginosa and its mechanism of action. World J Microbiol Biotechnol 27:1209–1216

    Article  Google Scholar 

  • ASTM (2002) Standard test methods for tensile properties thin plastic sheeting. ASTM D: 882-902

  • Baek M, Lee JA, Choi SJ (2012) Toxicological effects of a cationic clay, montmorillonite in vitro and in vivo. Mol Cell Toxicol 8:95–101

    Article  CAS  Google Scholar 

  • Barud HS, Thais R, Rodrigo FCM, Wilton RL, Younes M, Sidney JLR (2011) Antimicrobial bacterial cellulose–silver nanoparticles composite membranes. J Nanomater 2011:1–8

    Article  Google Scholar 

  • Chang WS, Chen HH (2016) Physical properties of bacterial cellulose composites for wound dressings. Food Hydrocoll 53:75–83

    Article  CAS  Google Scholar 

  • Chen K, Ye W, Cai S, Huang L, Zhong T, Chen L, Wang X (2016) Green antimicrobial coating based on quaternised chitosan/ organic montmorillonite/AgNPs nanocomposites. J Exp Nanosci 11:1360–1371

    Article  CAS  Google Scholar 

  • Cho KH, Park JE, Osaka T, Park SG (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta 51:956–960

    Article  CAS  Google Scholar 

  • Chung YC, Su YP, Chen CC, Jia G, Wang HL, Wu JCG, Lin JG (2004) Relationship between antibacterial activity of chitosans and surface characteristics of cell wall. Acta Pharmacol Sin 25:932–936

    CAS  Google Scholar 

  • Czaja W, Krystynowicz A, Bielecki S, Brown RM (2006) Microbial cellulose-the natural power to heal wounds. Biomaterials 27:145–151

    Article  CAS  Google Scholar 

  • Darroudi M, Ahmad MB, Shameli K, Abdullah AH, Ibrahim NA (2009) Synthesis and characterization of UV-irradiated silver/montmorillonite nanocomposites. Solid State Sci 11:1621–1624

    Article  CAS  Google Scholar 

  • Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24

    Article  CAS  Google Scholar 

  • Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, G Nakazato (2016) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomed NBM 12:789–799

    Article  Google Scholar 

  • Feng Q, Wu J, Chen G, Cui F, Kim T, Kim J (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  CAS  Google Scholar 

  • Feng J, Shi Q, Li W, Shu X, Chen A, Xie X, Huang X (2014) Antimicrobial activity of silver nanoparticles in situ growth on TEMPO-mediated oxidized bacterial cellulose. Cellulose 21:4557–4567

    Article  CAS  Google Scholar 

  • Gupta GS, Dhawan A, Shanker R (2016) Montmorillonite clay alters toxicity of silver nanoparticles in zebrafish (Danio rerio) eleutheroembryo. Chemosphere 163:242–251

    Article  CAS  Google Scholar 

  • He J, Kunitake T, Nakao A (2003) Facile in situ synthesis ofnoble metal nanoparticles in porous cellulose fibers. Chem Mater 15:4401–4406

    Article  CAS  Google Scholar 

  • Hsiao HL, Lin SB, Chen LC, Chen HH (2016) Hurdle effect of antimicrobial activity achieved by time differential releasing of nisin and chitosan hydrolysates from bacterial cellulose. J Food Sci 81:M1184–M1191

    Article  CAS  Google Scholar 

  • Hu Y, Catchmark JM, Zhu Y, Abidi N, Zhou X, Wang J, Liang N (2014) Engineering of porous bacterial cellulose toward human fibroblasts ingrowth for tissue engineering. J Mater Res 29:2682–2693

    Article  CAS  Google Scholar 

  • Huang HC, Chen LC, Lin SB, Hsu CP, Chen HH (2010) In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresour Technol 101:6084–6091

    Article  CAS  Google Scholar 

  • Incoronato AL, Buonocore GG, Conte A, Lavorgna M, Delnobile MA (2010) Active systems based on silver-montmorillonite nanoparticles embedded into bio-based polymer matrices for packaging applications. J Food Prot 73:2256–2262

    Article  CAS  Google Scholar 

  • Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechol 4:165. doi:10.4172/2157-7439.1000165

    Article  Google Scholar 

  • Jokar M, Rahman RA, Ibrahim NA, Abdullah LC, Tan CP (2012) Melt production and antimicrobial efficiency of low-density polyethylene (LDPE)-silver nanocomposite film. Food Bioprocess Technol 5:719–728

    Article  CAS  Google Scholar 

  • Kim SH, Lee HS, Ryu DS, Choi SJ, Lee DS (2011) Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J Microbiol Biotechnol 39:77–85

    CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44:3358–3393

    Article  CAS  Google Scholar 

  • Lavorgna M, Attianese I, Conte A, Nobile MA, Tescione F, Amendola E (2013) MMT-supported Ag nanoparticles for chitosan nanocomposites: structural properties and antibacterial activity. Carbohydr Polym 102:385–392

    Article  Google Scholar 

  • Li H, Xu Y, Xu H, Chang J (2014) Electrospun membranes: control of the structure and structure related applications in tissue regeneration and drug delivery. J Mater Chem B2:5492–5510

    Article  Google Scholar 

  • Li Z, Wang L, Chen S, Feng C, Chen S, Yin N, Yang J, Wang H, Xu Y (2015) Facilely green synthesis of silver nanoparticles into bacterial cellulose. Cellulose 22:373–383

    Article  CAS  Google Scholar 

  • Lin SB, Lin YC, Chen HH (2009) Low molecular weight chitosan prepared with the aid of cellulase, lysozyme and chitinase: characterisation and antimicrobial activity. Food Chem 116:47–53

    Article  CAS  Google Scholar 

  • Loo YY, Chieng BW, Nishibuchi M, Radu S (2012) Synthesis of silver nanoparticles by using tea leaf extract from Camellia sinensis. Int J Nanomed 7:4263–4267

    CAS  Google Scholar 

  • Martínez-Castañón MA, Niño-Martínez N, Martínez-Gutierrez F, Martínez-Mendoza JR, Ruiz F (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10:1343–1348

    Article  Google Scholar 

  • Mazhar UI, Taous K, Joong KP (2012) Nanoreinforced bacterial cellulose–montmorillonite composites for biomedical applications. Carbohydr Polym 89:1189–1197

    Article  Google Scholar 

  • Peretyazhko TS, Zhang Q, Colvin VL (2014) Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes. Environ Sci Technol 48:11954–11961

    Article  CAS  Google Scholar 

  • Pinto RJB, Marques AAP, Neto CP, Trindadea T, Daina S, Sadocco P (2009) Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater 5:2279–2289

    Article  CAS  Google Scholar 

  • Praus P, Turicova M, Machovic V, Studentova S, Klementova M (2010) Characterization of silver nanoparticles deposited on montmorillonite. Appl Clay Sci 49:341–345

    Article  CAS  Google Scholar 

  • Ruan C, Zhu Y, Zhou X, Abidi N, Hu Y, Catchmark JM (2016) Effect of cellulose crystallinity on bacterial cellulose assembly. Cellulose 23:3417–3427

    Article  CAS  Google Scholar 

  • Shameli K, Ahmad MB, Zargar M, Yunus WM, Rustaiyan A, Ibrahim NA (2011) Synthesis of silver nanoparticles in montmorillonite and their antibacterial behavior. Int J Nanomed 6:581–590

    Article  CAS  Google Scholar 

  • Shi D, Wang F, Lan T, Zhang Y, Shao Z (2016) Convenient fabrication of carboxymethyl cellulose electrospun nanofibers functionalized with silver nanoparticles. Cellulose 23:1899–1909

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  • Su HL, Lin SH, Wei JC, Pao IC, Chiao SH, Huang CC, Lin SZ, Lin JJ (2011) Novel nanohybrids of silver particles on clay platelets for inhibiting silver-resistant bacteria. PLoS ONE 6:e21125

    Article  CAS  Google Scholar 

  • Van Dong P, Ha CH, Kasbohm J (2012) Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. Int Nano Lett 2:1–9

    Article  Google Scholar 

  • Wang Z, Chen X, Chen M, Wu L (2009) Facile fabricationmethod and characterization of hollow Ag/SiO2 double shell edspheres. Langmuir 25:7646–7651

    Article  CAS  Google Scholar 

  • Wen GQ, Luo YH, Liang AH, Jiang ZL (2014) Autocatalytic oxidization of nanosilver and its application to spectral analysis. Sci Rep 4:3990–3996

    Article  Google Scholar 

  • Xu G, Qiao X, Qiu X, Chen J (2011) Preparation and characterization of nano-silver loaded montmorillonite with strong antibacterial activity and slow release property. J Mater Sci Technol 27:685–690

    Article  CAS  Google Scholar 

  • Yang SJ (2011) Development of fabricated composites film with bacterial cellulose and the investigation of its physical properties. Master thesis of Department of Food Science, National Ilan University. I-Lan, Taiwan

  • Ye D, Zhong Z, Xu H, Chang C, Yang Z, Wang Y, Ye Q, Zhang L (2016) Construction of cellulose/nanosilver sponge materials and their antibacterial activities for infected wounds healing. Cellulose 23:749–763

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Science Council (NSC 101-2313-B-197-002-MY3) for their financial support of this study and express appreciation to partners in the Nano-Biomaterial Application Lab (NBA) for their assistance with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Huang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YT., Lin, SB., Chen, LC. et al. Antimicrobial activity and controlled release of nanosilvers in bacterial cellulose composites films incorporated with montmorillonites. Cellulose 24, 4871–4883 (2017). https://doi.org/10.1007/s10570-017-1487-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1487-3

Keywords

Navigation