Skip to main content
Log in

Microwave-assisted facile synthesis of TEMPO-oxidized cellulose beads with high adsorption capacity for organic dyes

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A facile, green and efficient microwave-assisted method was developed to oxidize cellulose hydrogel beads with neutral 2,2,6,6-tetramethylpiperidinyl-1-oxyl radical (TEMPO)-mediated system. Resulting cellulose beads were investigated by scanning electron microscopy, solid-state 13C-NMR spectra, and X-ray diffraction. The patterns of 13C-NMR spectra indicated that the oxidation occurred only at C6 primary hydroxyl carbon, and the carboxyl groups amounted to 1.28 mmol/g in the cellulose beads. The TEMPO-oxidized cellulose beads showed highly porous structures consisting of nano-sized fibrils with retention of original spherical shapes, and the crystallinity index of the cellulose II almost unchanged after oxidation. The maximum adsorption capacity of rhodamine B, auramine O, malachite green and methylene blue on the TEMPO-oxidized cellulose beads was found to be 609, 537, 740 and 873 mg/g, respectively, and the adsorption process was well described by pseudo-second-order kinetics. In addition, desorption tests showed that TEMPO-oxidized cellulose beads could be regenerated by acid treatment and used repeatedly. Thus, TEMPO-oxidized cellulose beads prepared by microwave irradiation can be potentially used for the removal of organic dyes from industrial wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akira I, Tsuguyuki S, Hayaka F (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    Article  Google Scholar 

  • Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112:5073–5091

    Article  CAS  Google Scholar 

  • Astrini N, Anah L, Haryadi HR (2015) Adsorption of heavy metal ion from aqueous solution by using cellulose based hydrogel composite. Macromol Symp 353:191–197

    Article  CAS  Google Scholar 

  • Bayramoglu G, Altintas B, Arica MY (2012) Synthesis and characterization of magnetic beads containing aminated fibrous surfaces for removal of reactive green 19 dye: kinetics and thermodynamic parameters. J Chem Technol Biot 87:705–713

    Article  CAS  Google Scholar 

  • Béatrice K, Philippe C (2002) Recent extraction techniques for natural products: microwave-assisted extraction and pressurised solvent extraction. Phytochem Anal 13:105–113

    Article  Google Scholar 

  • Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose aerogels from aqueous alkali hydroxide–urea solution. ChemSusChem 1:149–154

    Article  CAS  Google Scholar 

  • Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53

    Article  CAS  Google Scholar 

  • Chang C, Duan B, Zhang L (2009) Fabrication and characterization of novel macroporous cellulose–alginate hydrogels. Polymer 50:5467–5473

    Article  CAS  Google Scholar 

  • Chang C, Zhang L, Zhou J, Zhang L, Kennedy JF (2010) Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydr Polym 82:122–127

    Article  CAS  Google Scholar 

  • Chen L, Berry RM, Tam KC (2014a) Synthesis of β-cyclodextrin-modified cellulose nanocrystals (CNCs)@Fe3O4@SiO2 superparamagnetic nanorods. Acs Sustain Chem Eng 2:951–958

    Article  CAS  Google Scholar 

  • Chen W, Li Q, Wang Y, Yi X, Zeng J, Yu H, Liu Y, Li J (2014b) Comparative study of aerogels obtained from differently prepared nanocellulose fibers. ChemSusChem 7:154–161

    Article  CAS  Google Scholar 

  • Chen X, Zhou S, Zhang L, You T, Xu F (2016) Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution. Materials 9:582–596

    Article  Google Scholar 

  • Ching TW, Haritos V, Tanksale A (2017) Microwave assisted conversion of microcrystalline cellulose into value added chemicals using dilute acid catalyst. Carbohydr Polym 157:1794–1800

    Article  CAS  Google Scholar 

  • Gabhane J, William SPMP, Vaidya AN, Mahapatra K, Chakrabarti T (2011) Influence of heating source on the efficacy of lignocellulosic pretreatment—a cellulosic ethanol perspective. Biomass Bioenerg 35:96–102

    Article  CAS  Google Scholar 

  • Gan S, Zakaria S, Chia CH, Kaco H, Padzil FN (2014) Synthesis of kenaf cellulose carbamate using microwave irradiation for preparation of cellulose membrane. Carbohydr Polym 106:160–165

    Article  CAS  Google Scholar 

  • Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manage 90:2313–2342

    Article  CAS  Google Scholar 

  • Hirota M, Tamura N, Saito T, Isogai A (2009) Surface carboxylation of porous regenerated cellulose beads by 4-acetamide-TEMPO/NaClO/NaClO2 system. Cellulose 16:841–851

    Article  CAS  Google Scholar 

  • Hokkanen S, Bhatnagar A, Sillanpää M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173

    Article  CAS  Google Scholar 

  • Hu ZH, Wen ZY (2008) Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochem Eng J 38:369–378

    Article  CAS  Google Scholar 

  • Huang B, Lu Q, Tang L (2016) Research progress of nanocellulose manufacture and application. J For Eng 1:1–9

    Google Scholar 

  • Isobe N, Chen X, Kim UJ, Kimura S, Wada M, Saito T, Isogai A (2013) TEMPO-oxidized cellulose hydrogel as a high-capacity and reusable heavy metal ion adsorbent. J Hazard Mater 260:195–201

    Article  CAS  Google Scholar 

  • Isogai A, Kato Y (1998) Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5:153–164

    Article  CAS  Google Scholar 

  • Jia N, Li SM, Zhu JF, Ma MG, Xu F, Wang B, Sun RC (2010) Microwave-assisted synthesis and characterization of cellulose-carbonated hydroxyapatite nanocomposites in NaOH–urea aqueous solution. Mater Lett 64:2223–2225

    Article  CAS  Google Scholar 

  • Khandanlou R, Ngoh GC, Wen TC (2016) Feasibility study and structural analysis of cellulose isolated from rice husk: microwave irradiation, optimization, and treatment process scheme. Bioresour 11:5751–5766

    CAS  Google Scholar 

  • Kim UJ, Kuga S, Wada M, Okano T, Konodo T (2000) Periodate oxidation of crystalline cellulose. Biomacromol 1:488–492

    Article  CAS  Google Scholar 

  • Laisha GM, Sharkov VI (1974) The kinetics of oxidation of celluloses by nitrogen tetroxide as a characteristic of their supermolecular structure. Polym Sci USSR 16:1971–1978

    Article  Google Scholar 

  • Lin C, Zhan H, Liu MH, Fu SY, Huang LH (2010) Rapid homogeneous preparation of cellulose graft copolymer in BMIMCL under microwave irradiation. J Appl Polym Sci 118:399–404

    Article  CAS  Google Scholar 

  • Lin N, Bruzzese C, Dufresne A (2012) TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges. ACS Appl Mater Interfaces 4:4948–4959

    Article  CAS  Google Scholar 

  • Liu Y, Hu H (2008) X-ray diffraction study of bamboo fibers treated with NaOH. Fibers Polym 9:735–739

    Article  CAS  Google Scholar 

  • Liu L, Gao ZY, Su XP, Chen X, Jiang L, Yao JM (2015) Adsorption removal of dyes from single and binary solutions using a cellulose-based bioadsorbent. ACS Sustain Chem Eng 3:432–442

    Article  CAS  Google Scholar 

  • Luo X, Zhang L (2009) High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon. J Hazard Mater 171:340–347

    Article  CAS  Google Scholar 

  • Ma X, Liu X, Anderson DP, Chang PR (2015) Modification of porous starch for the adsorption of heavy metal ions from aqueous solution. Food Chem 181:133–139

    Article  CAS  Google Scholar 

  • Melo JCP, Filho ECS, Santana SAA, Airoldi C (2011) Synthesized cellulose/succinic anhydride as an ion exchanger. Calorimetry of divalent cations in aqueous suspension. Thermochim Acta 524:29–34

    Article  CAS  Google Scholar 

  • Nooy AEJD, Besemer AC, Bekkum HV (1995) Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr Res 269:89–98

    Article  Google Scholar 

  • Peng H, Chen H, Qu Y, Li H, Xu J (2014) Bioconversion of different sizes of microcrystalline cellulose pretreated by microwave irradiation with/without NaOH. Appl Energy 117:142–148

    Article  CAS  Google Scholar 

  • Peng Q, Liu M, Zheng J, Zhou C (2015) Adsorption of dyes in aqueous solutions by chitosan–halloysite nanotubes composite hydrogel beads. Microporous Mesoporous Mater 201:190–201

    Article  CAS  Google Scholar 

  • Razzaq T, Kappe CO (2008) On the energy efficiency of microwave-assisted organic reactions. ChemSusChem 1:123–132

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromol 5:1983–1989

    Article  CAS  Google Scholar 

  • Saito T, Shibata I, Isogai A, Suguri N, Sumikawa N (2005) Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation. Carbohydr Polym 61:414–419

    Article  CAS  Google Scholar 

  • Saito T, Okita Y, Nge TT, Sugiyama J, Isogai A (2006) TEMPO-mediated oxidation of native cellulose: microscopic analysis of fibrous fractions in the oxidized products. Carbohydr Polym 65:435–440

    Article  CAS  Google Scholar 

  • Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromol 10:1992–1996

    Article  CAS  Google Scholar 

  • Shaveta Bansal N, Singh P (2014) F−/Cl− mediated microwave assisted breakdown of cellulose to glucose. Tetrahedron Lett 55:2467–2470

    Article  CAS  Google Scholar 

  • Sun C, Huang Z, Wang J, Rao L, Zhang J, Yu J, Du J, Xu C (2016) Modification of microcrystalline cellulose with pyridone derivatives for removal of cationic dyes from aqueous solutions. Cellulose 23:2917–2927

    Article  CAS  Google Scholar 

  • Tian D, Zhang X, Lu C, Yuan G, Zhang W, Zhou Z (2014) Solvent-free synthesis of carboxylate-functionalized cellulose from waste cotton fabrics for the removal of cationic dyes from aqueous solutions. Cellulose 21:473–484

    Article  CAS  Google Scholar 

  • Türgay O, Ersöz G, Atalay S, Forss J, Welander U (2011) The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation. Sep Purif Technol 79:26–33

    Article  Google Scholar 

  • Wang L, Li J (2013) Adsorption of C.I. Reactive Red 228 dye from aqueous solution by modified cellulose from flax shive: kinetics, equilibrium, and thermodynamics. Ind Crops Prod 42:153–158

    Article  Google Scholar 

  • Wang YF, Gao BY, Yue QY, Wang Y, Yang ZL (2012) Removal of acid and direct dye by epichlorohydrin-dimethylamine: flocculation performance and floc aggregation properties. Bioresour Technol 113:265–271

    Article  CAS  Google Scholar 

  • Wen Y, Wei B, Cheng D, An X, Ni Y (2016) Stability enhancement of nanofibrillated cellulose in electrolytes through grafting of 2-acrylamido-2-methylpropane sulfonic acid. Cellulose 24:1–8

    Google Scholar 

  • Wu JS, Liu CH, Chu KH, Suen SY (2008) Removal of cationic dye methyl violet 2B from water by cation exchange membranes. J Membr Sci 309:239–245

    Article  CAS  Google Scholar 

  • Xu Y, Xu Y, Yue X (2017) Changes of hydrogen bonding and aggregation structure of cellulose fiber due to microwave-assisted alkali treatment and its impacts on the application as fluff pulp. Cellulose 24:967–976

    Article  CAS  Google Scholar 

  • Yao Q, Xie J, Liu J, Kang H, Liu Y (2014) Adsorption of lead ions using a modified lignin hydrogel. J Polym Res 21:465–481

    Article  Google Scholar 

  • Yu M, Li J, Wang L (2016a) KOH-activated carbon aerogels derived from sodium carboxymethyl cellulose for high-performance supercapacitors and dye adsorption. Chem Eng J 310:300–306

    Article  Google Scholar 

  • Yu S, Xiao Y, Wang G, Luo W, Li X, Liu Y (2016b) Preparation of flyash/chitosan composites and its application in the wastewater of wood dyeing. J For Eng 1:29–33

    Google Scholar 

  • Zhang Y, Tang ZR, Fu X, Xu YJ (2010) TiO2− graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2− graphene truly different from other TiO2− carbon composite materials? ACS Nano 4:7303–7314

    Article  CAS  Google Scholar 

  • Zhao D, Huang J, Zhong Y, Li K, Zhang L, Cai J (2016) High strength and high toughness double cross linked cellulose hydrogels: a new strategy using sequential chemical and physical cross linking. Adv Funct Mater 26:6279–6287

    Article  CAS  Google Scholar 

  • Zhou Y, Zhang M, Hu X, Wang X, Niu J, Ma T (2013) Adsorption of cationic dyes on a cellulose-based multicarboxyl adsorbent. J Chem Eng Data 58:413–421

    Article  CAS  Google Scholar 

  • Zhou Y, Wang X, Zhang M, Jin Q, Gao B, Ma T (2014) Removal of Pb(II) and malachite green from aqueous solution by modified cellulose. Cellulose 21:2797–2809

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the generous financial support of the State Forestry Administration 948 project (No. 2014-4-30), National Natural Science Foundation of China (No. 21402027, 31370560), the Natural Science Foundation of Fujian Province (No. 2015J05046), open fund of Guangxi Key Laboratory of Chemistry and Engineering of Forest Products (No. GXFC 14-03) and Chemicals and Science Foundation for Distinguished Young Scholars of Fujian Agriculture and Forestry University (No. xjq201503).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Biao Huang or Beili Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, F., You, Y., Yang, X. et al. Microwave-assisted facile synthesis of TEMPO-oxidized cellulose beads with high adsorption capacity for organic dyes. Cellulose 24, 5025–5040 (2017). https://doi.org/10.1007/s10570-017-1473-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1473-9

Keywords

Navigation