Skip to main content

Advertisement

Log in

Surfactant effects on the particle size, zeta potential, and stability of starch nanoparticles and their use in a pH-responsive manner

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Storage conditions seem to be important in the long-term stability of nanoparticles (NPs). This work studies the effects of surfactants and storage container on particle size distribution and zeta potential during long-term storage of acid hydrolyzed potato starch NPs. The NPs were prepared from potato starch using acid hydrolysis and high-intensity ultrasonication. During the ultrasonic treatment, the surfactants were added dropwise to the solutions to reduce the size and stabilize the formed NPs. Particle size distribution, zeta potential, and FE-SEM were used to characterize the ensuing NPs. Additionally, a 5-month stability study was performed to evaluate the maintenance of potato starch NPs over time at different storage conditions. Then, NPs from corn starch were produced by the same procedure and were used for preparing pH-responsive nanocarriers containing NaHCO3 for delivery of an anti-cancer drug, FTY720. These NPs were able to release the drug at pH 5.0 because of CO2 generated from NaHCO3 in acidic pH and released from the NPs by the production of pores, which accelerate drug release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NP:

Nanoparticle

CTAB:

Cetyltrimethylammonium bromide

SDBS:

Sodium dodecyl benzenesulfonate

PEG:

Polyethylene glycol

FE-SEM:

Field emission scanning electron microscope

PDI:

Polydispersity index

HLB:

Hydrophilic-lipophilic balance

References

  • Akbari B, Tavandashti MP, Zandrahimi M (2011) Particle size characterization of nanoparticles—a practicalapproach. Iran J Mater Sci Eng 8:48–56

    CAS  Google Scholar 

  • An X, Wen Y, Cheng D, Zhu X, Ni Y (2016) Preparation of cellulose nano-crystals through a sequential process of cellulase pretreatment and acid hydrolysis. Cellulose 23:2409–2420

    Article  CAS  Google Scholar 

  • Anderson R. Sensitivities in wet granulation processes. Part IIB Research Project. University of Cambridge

  • Angellier H, Choisnard L, Molina-Boisseau S, Ozil P, Dufresne A (2004) Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology. Biomacromol 5:1545–1551

    Article  CAS  Google Scholar 

  • Avérous L, Halley PJ (2009) Biocomposites based on plasticized starch Biofuels. Bioprod Biorefin 3:329–343

    Article  Google Scholar 

  • Banerjee I, Mishra D, Das T, Maiti TK (2012) Wound pH-responsive sustained release of therapeutics from a poly (NIPAAm-co-AAc) hydrogel. J Biomater Sci Polym Edit 23:111–132

    Article  CAS  Google Scholar 

  • Barthold S, Kletting S, Taffner J, de Souza Carvalho-Wodarz C, Lepeltier E, Loretz B, Lehr C-M (2016) Preparation of nanosized coacervates of positive and negative starch derivatives intended for pulmonary delivery of proteins. J Mater Chem B 4:2377–2386

    Article  CAS  Google Scholar 

  • Basak SC, Kumar KS, Ramalingam M (2008) Design and release characteristics of sustained release tablet containing metformin HCl. Revista Brasileira de Ciências Farmacêuticas 44:477–483

    Article  CAS  Google Scholar 

  • Bel Haaj S, Magnin A, Pétrier C, Boufi S (2013) Starch nanoparticles formation via high power ultrasonication. Carbohydr Polym 92:1625–1632

    Article  CAS  Google Scholar 

  • Budiasih S et al (2014) Optimization of polymer concentration for designing of oral matrix controlled release dosage form UK. J Pharm Biosci 2:54

    Google Scholar 

  • Chacon Z, Laverde D, Pedraza J (2008) Interaction of bromide cetyltrimetyl ammonium with the sites superficial actives of the kaolinite during the flotation. DYNA 75:73–80

    Google Scholar 

  • Chin SF, Pang SC, Tay SH (2011) Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method. Carbohydr Polym 86:1817–1819

    Article  CAS  Google Scholar 

  • Coelho J (2013) Drug delivery systems: advanced technologies potentially applicable in personalised treatment. Springer, Houten

    Book  Google Scholar 

  • de Bragança RM, Fowler P (2004) Industrial markets for starch the biocomposites centre. Univeristy of Wales, Bangor, p 4

    Google Scholar 

  • Dillen K, Vandervoort J, Van den Mooter G, Ludwig A (2006) Evaluation of ciprofloxacin-loaded Eudragit® RS100 or RL100/PLGA nanoparticles. Int J Pharm 314:72–82

    Article  CAS  Google Scholar 

  • Doktorovova S et al (2011) Cationic solid lipid nanoparticles (cSLN): structure, stability and DNA binding capacity correlation studies. Int J Pharm 420:341–349

    Article  CAS  Google Scholar 

  • Dong P, Prasanth R, Xu F, Wang X, Li B, Shankar R (2015) Eco-friendly polymer nanocomposite—properties and processing. In: Thakur V, Thakur M (eds) Eco-friendly polymer Nanocomposites. Advanced structured materials, vol 75. Springer, New Delhi, pp 1–15. doi:10.1007/978-81-322-2470-9_1

  • Dong Y, Chang Y, Wang Q, Tong J, Zhou J (2016) Effects of surfactants on size and structure of amylose nanoparticles prepared by precipitation. Bull Mater Sci 39:35–39

    Article  CAS  Google Scholar 

  • Dufresne A, Castaño J (2017) Polysaccharide nanomaterial reinforced starch nanocomposites: a review. Starch 69:1500307-n/a. doi:10.1002/star.201500307

    Article  Google Scholar 

  • El-Feky GS, El-Rafie M, El-Sheikh M, El-Naggar ME, Hebeish A (2015) Utilization of crosslinked starch nanoparticles as a carrier for Indomethacin and Acyclovir drugs. J Nanomed Nanotechnol 6:1

    Google Scholar 

  • Flick EW (2012) Industrial surfactants: An industrial guide, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • French AD, Cintrón MS (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588

    Article  CAS  Google Scholar 

  • Gaber A, Abdel-Rahim M, Abdel-Latief A, Abdel-Salam MN (2014) Influence of calcination temperature on the structure and porosity of nanocrystalline SnO2 synthesized by a conventional precipitation method. Int J Electrochem Sci 9:81–95

    Google Scholar 

  • García NL, Famá L, D’Accorso NB, Goyanes S (2015) Biodegradable starch nanocomposites. In: Thakur V, Thakur M (eds) Eco-friendly polymer nanocomposites. Advanced structured materials, vol 75. Springer, New Delhi, pp 17–77

  • Gonzalez MAA, Cadena AAZ, Aguilar CN, Muzquiz EM, Equihua F (2015) Potato starch: binder and pore former in nanoframes of nanolayered oxides for Pb2+ and Ni2+ as pollutants in water and industrial sludge applications RSC. Advances 5:29748–29756. doi:10.1039/C5RA00190K

    Google Scholar 

  • Hanot CC, Choi YS, Anani TB, Soundarrajan D, David AE (2015) Effects of iron-oxide nanoparticle surface chemistry on uptake kinetics and cytotoxicity in CHO-K1 cells. Int J Mol Sci 17:54

    Article  Google Scholar 

  • He C, Hu Y, Yin L, Tang C, Yin C (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31:3657–3666

    Article  CAS  Google Scholar 

  • Hebeish A, El-Rafie M, El-Sheikh M, El-Naggar ME (2014) Ultra-fine characteristics of starch nanoparticles prepared using native starch with and without surfactant. J Inorg Organomet Polym Mater 24:515–524

    Article  CAS  Google Scholar 

  • Hielscher T (2007) Ultrasonic production of nano-size dispersions and emulsions. arXiv preprint arXiv:07081831

  • Hossain MM, Mondal MIH, Khan MMR, Alam AF, Hasan AK (2012) Interactions between starch and surfactants by ternary phase diagram. Can J Chem 3:246–255

    Google Scholar 

  • Hossain MM, Mondal MIH, RaihanSharif M (2014) Structure of starch-ionic surfactant complexes studied by ternary phase, XRD Scanning Electron Microscopy. Orient J Chem 30:71–79

    Article  CAS  Google Scholar 

  • Hotze EM, Phenrat T, Lowry GV (2010) Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 39:1909–1924

    Article  CAS  Google Scholar 

  • Housaindokht MR, Pour AN (2012) Study the effect of HLB of surfactant on particle size distribution of hematite nanoparticles prepared via the reverse microemulsion. Solid State Sci 14:622–625

    Article  CAS  Google Scholar 

  • Ke CJ et al (2011) Smart multifunctional hollow microspheres for the quick release of drugs in intracellular lysosomal compartments. Angew Chem 123:8236–8239

    Article  Google Scholar 

  • Kim HY, Lee JH, Kim JY, Lim WJ, Lim ST (2012) Characterization of nanoparticles prepared by acid hydrolysis of various starches. Starch 64:367–373

    Article  CAS  Google Scholar 

  • Kim H-Y, Han J-A, Kweon D-K, Park J-D, Lim S-T (2013a) Effect of ultrasonic treatments on nanoparticle preparation of acid-hydrolyzed waxy maize starch. Carbohydr Polym 93:582–588

    Article  CAS  Google Scholar 

  • Kim H-Y, Park DJ, Kim J-Y, Lim S-T (2013b) Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication. Carbohydr Polym 98:295–301

    Article  CAS  Google Scholar 

  • LaGrow AP, Ingham B, Toney MF, Tilley RD (2013) Effect of surfactant concentration and aggregation on the growth kinetics of nickel nanoparticles. J Phys Chem C 117:16709–16718

    Article  CAS  Google Scholar 

  • Lambert JB (1987) Introduction to organic spectroscopy. Macmillan, New York

    Google Scholar 

  • Liu J, Ma H, Wei T, Liang X-J (2012) CO2 gas induced drug release from pH-sensitive liposome to circumvent doxorubicin resistant cells. Chem Commun 48:4869–4871

    Article  CAS  Google Scholar 

  • Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, Liang X-J (2014) pH-Sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv 32:693–710

    Article  CAS  Google Scholar 

  • Lu P, Hsieh Y-L (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336

    Article  Google Scholar 

  • Lu D, Xiao C, Xu S (2009) Starch-based completely biodegradable polymer materials. Express Polym Lett 3:366–375

    Article  CAS  Google Scholar 

  • Macrae CF et al (2008) Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470

    Article  CAS  Google Scholar 

  • Masoudipour E, Kashanian S, Maleki N (2017) A targeted drug delivery system based on dopamine functionalized nano graphene oxide. Chem Phys Lett 668:56–63

    Article  CAS  Google Scholar 

  • Meyabadi TF, Dadashian F, Sadeghi GMM, Asl HEZ (2014) Spherical cellulose nanoparticles preparation from waste cotton using a green method. Powder Technol 261:232–240

    Article  Google Scholar 

  • Namazi H, Fathi F, Heydari A (2012) Nanoparticles based on modified polysaccharides. In: Heydari A (ed) The delivery of nanoparticles. InTech, Rijeka, pp 149–184

    Google Scholar 

  • Opolski A, Wietrzyk J, Chrobak A, Marcinkowska E, Wojdat E, Kutner A, Radzikowski C (1999) Antiproliferative activity in vitro of side-chain analogues of calcitriol against various human normal and cancer cell lines. Anticancer Res 19:5217–5222

    CAS  Google Scholar 

  • Pandey H, Parashar V, Parashar R, Prakash R, Ramteke PW, Pandey AC (2011) Controlled drug release characteristics and enhanced antibacterial effect of graphene nanosheets containing gentamicin sulfate. Nanoscale 3:4104–4108

    Article  CAS  Google Scholar 

  • Popov D et al (2009) Crystal structure of A-amylose: a revisit from synchrotron microdiffraction analysis of single crystals. Macromolecules 42:1167–1174

    Article  CAS  Google Scholar 

  • Rofstad EK, Mathiesen B, Kindem K, Galappathi K (2006) Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Can Res 66:6699–6707

    Article  CAS  Google Scholar 

  • Rouxel D, Hadji R, Vincent B, Fort Y (2011) Effect of ultrasonication and dispersion stability on the cluster size of alumina nanoscale particles in aqueous solutions. Ultrason Sonochem 18:382–388

    Article  Google Scholar 

  • Schäfer B, Hecht M, Harting J, Nirschl H (2010) Agglomeration and filtration of colloidal suspensions with DVLO interactions in simulation and experiment. J Colloid Interface Sci 349:186–195

    Article  Google Scholar 

  • Scherrer P (1912) Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. In: Zsigmondy R (ed) Kolloidchemie Ein Lehrbuch. Chemische Technologie in Einzeldarstellungen. Springer, Berlin, pp 387–409

  • Schneider LA, Korber A, Grabbe S, Dissemond J (2007) Influence of pH on wound-healing: a new perspective for wound-therapy? Arch Dermatol Res 298:413–420

    Article  Google Scholar 

  • Sharma UK, Verma A, Prajapati SK, Pandey H, Pandey AC (2015) In vitro, in vivo and pharmacokinetic assessment of amikacin sulphate laden polymeric nanoparticles meant for controlled ocular drug delivery. Appl Nanosci 5:143–155

    Article  CAS  Google Scholar 

  • Song D (2011) Starch crosslinking for cellulose fiber modification and starch nanoparticle formation. Georgia Institute of Technology

  • Sparla F et al (2014) New starch phenotypes produced by TILLING in barley. PloS one 9:e107779

    Article  Google Scholar 

  • Vidyasagar C, Naik YA (2016) Surfactant (PEG 400) effects on crystallinity of ZnO nanoparticles. Arab J Chem 9:507–510

    Article  CAS  Google Scholar 

  • Xiao S, Liu X, Tong C, Zhao L, Liu X, Zhou A, Cao Y (2012) Dialdehyde starch nanoparticles as antitumor drug delivery system: an in vitro, in vivo, and immunohistological evaluation. Chin Sci Bull 57:3226–3232

    Article  CAS  Google Scholar 

  • Xu F, Yuan Y, Shan X, Liu C, Tao X, Sheng Y, Zhou H (2009) Long-circulation of hemoglobin-loaded polymeric nanoparticles as oxygen carriers with modulated surface charges. Int J Pharm 377:199–206

    Article  CAS  Google Scholar 

  • Zhang J, Elder TJ, Pu Y, Ragauskas AJ (2007) Facile synthesis of spherical cellulose nanoparticles. Carbohydr Polym 69:607–611

    Article  CAS  Google Scholar 

  • Zhang Z et al (2013) Facile preparation of corn starch nanoparticles by alkali-freezing treatment RSC. Advances 3:13406–13411

    CAS  Google Scholar 

  • Zobel H, Young S, Rocca L (1988) Starch gelatinization: an X-ray diffraction study. Cereal Chem 65:443–446

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheila Kashanian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masoudipour, E., Kashanian, S., Azandaryani, A.H. et al. Surfactant effects on the particle size, zeta potential, and stability of starch nanoparticles and their use in a pH-responsive manner. Cellulose 24, 4217–4234 (2017). https://doi.org/10.1007/s10570-017-1426-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1426-3

Keywords

Navigation