Skip to main content
Log in

Structure–property relationships of blended polysaccharide and protein biomaterials in ionic liquid

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose and silk blended biomaterial films were regenerated from ionic liquid solution and investigated to characterize and understand the effect of inter- and intra-molecular interactions upon the morphology and thermal properties. The blended films were dissolved in 1-allyl-3-methylimidazolium chloride ionic liquid, coagulated and regenerated with water. Various characterization techniques were implemented to characterize structural, morphological and thermal properties: FTIR, SEM, TGA, DSC and X-ray scattering. The results showed that the cellulose microcrystalline structure and β-sheets from the silk can be disrupted by inter- and intra-molecular hydrogen bonds forming intermediate semicrystalline or amorphous structures. The SEM showed morphological effects of such interactions that cause varying thermal degradation and glass transition temperature. The X-ray scattering confirms such findings at the molecular level, demonstrating that the cellulose microfibril diameter decreases as the silk content increases. It also shows that the β-sheets size increases as the cellulose content increases. These various techniques provide evidence that suggest the hydrogen bonds between the β-sheets and the glucose units in the cellulose chains control the thermal and structural properties of the blended films, changing the morphology and physicochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdul Khalil HPS, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665. doi:10.1016/j.carbpol.2013.08.069

    Article  CAS  Google Scholar 

  • Abdul Khalil HPS, Bhat AH, Abu Bakar A, Tahir PM, Zaidul ISM, Jawaid M (2015) Cellulosic nanocomposites from natural fibers for medical applications: a review. In: Pandey KJ, Takagi H, Nakagaito NA, Kim H-J (eds) Handbook of polymer nanocomposites. Processing, performance and application: volume C: polymer nanocomposites of cellulose nanoparticles. Springer, Berlin, pp 475–511. doi:10.1007/978-3-642-45232-1_72

  • Agarwal UP (2006) Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta 224:1141–1153. doi:10.1007/s00425-006-0295-z

    Article  CAS  Google Scholar 

  • Asakura T, Yamane T, Nakazawa Y, Kameda T, Ando K (2001) Structure of Bombyx mori silk fibroin before spinning in solid state studied with wide angle X-ray scattering and 13C cross-polarization/magic angle spinning NMR. Biopolymers 58:521–525. doi:10.1002/1097-0282(20010415)

    Article  CAS  Google Scholar 

  • Asakura T, Okushita K, Williamson MP (2015) Analysis of the structure of bombyx mori silk fibroin by NMR. Macromolecules 48:2345–2357. doi:10.1021/acs.macromol.5b00160

    Article  CAS  Google Scholar 

  • Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285. doi:10.1126/science.223.4633.283

    Article  CAS  Google Scholar 

  • Busse-Wicher M et al (2014) The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana. Plant J 79:492–506

    Article  CAS  Google Scholar 

  • Cheng G et al (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules 12:933–941. doi:10.1021/bm101240z

    Article  CAS  Google Scholar 

  • Cheng G, Varanasi P, Arora R, Stavila V, Simmons BA, Kent MS, Singh S (2012) Impact of ionic liquid pretreatment conditions on cellulose crystalline structure using 1-ethyl-3-methylimidazolium acetate. J Phys Chem B 116:10049–10054. doi:10.1021/jp304538v

    Article  CAS  Google Scholar 

  • Dammström S, Salmén L, Gatenholm P (2008) On the interactions between cellulose and xylan, a biomimetic simulation of the hardwood cell wall. BioResources 4:3–14

    Google Scholar 

  • Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779. doi:10.1039/C4NR01756K

    Article  CAS  Google Scholar 

  • Fernandes AN et al (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci 108:E1195–E1203. doi:10.1073/pnas.1108942108

    Article  Google Scholar 

  • Freddi G, Romanò M, Massafra MR, Tsukada M (1995) Silk fibroin/cellulose blend films: preparation, structure, and physical properties. J Appl Polym Sci 56:1537–1545. doi:10.1002/app.1995.070561203

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. doi:10.1007/s10570-013-0030-4

    Article  CAS  Google Scholar 

  • Fukushima T, Asaka K, Kosaka A, Aida T (2005) Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew Chem 117:2462–2465. doi:10.1002/ange.200462318

    Article  Google Scholar 

  • Gong Z, Huang L, Yang Y, Chen X, Shao Z (2009) Two distinct β-sheet fibrils from silk protein. Chem Commun. doi:10.1039/B914218E

    Google Scholar 

  • He S-J, Valluzzi R, Gido SP (1999) Silk I structure in Bombyx mori silk foams. Int J Biol Macromol 24:187–195. doi:10.1016/S0141-8130(99)00004-5

    Article  CAS  Google Scholar 

  • Helbert W, Nishiyama Y, Okano T, Sugiyama J (1998) Molecular Imaging of Halocynthia papillosa Cellulose. J Struct Biol 124:42–50. doi:10.1006/jsbi.1998.4045

    Article  CAS  Google Scholar 

  • Hu X, Kaplan D, Cebe P (2008) Dynamic protein–water relationships during β-sheet formation. Macromolecules 41:3939–3948. doi:10.1021/ma071551d

    Article  CAS  Google Scholar 

  • Hu X, Cebe P, Weiss AS, Omenetto F, Kaplan DL (2012) Protein-based composite materials. Mater Today 15:208–215. doi:10.1016/S1369-7021(12)70091-3

    Article  CAS  Google Scholar 

  • Hu X, Raja WK, An B, Tokareva O, Cebe P, Kaplan DL (2013) Stability of silk and collagen protein materials in space. Sci Rep 3:3428. doi:10.1038/srep03428. http://www.nature.com/articles/srep03428#supplementary-information

  • Ibbett R, Gaddipati S, Hill S, Tucker G (2013) Structural reorganisation of cellulose fibrils in hydrothermally deconstructed lignocellulosic biomass and relationships with enzyme digestibility. Biotechnol Biofuels 6:1–15. doi:10.1186/1754-6834-6-33

    Article  Google Scholar 

  • Loelovich M (2011) Nano-Structural Approach to Description of Enzymatic Hydrolysis of Pretreated Biomass. J Sci Isr Technol Adv 13:4

    Google Scholar 

  • Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319. doi:10.1023/a:1009272632367

    Article  CAS  Google Scholar 

  • Johnson KE (2007) What’s an ionic liquid? Electrochem Soc Interface 16:38–41

    CAS  Google Scholar 

  • Kafle K, Shin H, Lee CM, Park S, Kim SH (2015) Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis. Sci Rep. doi:10.1038/srep15102

    Google Scholar 

  • Kamel S (2007) Nanotechnology and its applications in lignocellulosic composites, a mini review. Express Polym Lett 1:546–575

    Article  CAS  Google Scholar 

  • Kim U-J, Park J, Li C, Jin H-J, Valluzzi R, Kaplan DL (2004) Structure and properties of silk hydrogels. Biomacromolecules 5:786–792. doi:10.1021/bm0345460

    Article  CAS  Google Scholar 

  • Levy I, Nussinovitch A, Shpigel E, Shoseyov O (2002) Recombinant cellulose crosslinking protein: a novel paper-modification biomaterial. Cellulose 9:91–98. doi:10.1023/a:1015848701029

    Article  CAS  Google Scholar 

  • Lewis A, Waters JC, Stanton J, Hess J, Salas-de la Cruz D (2016) Macromolecular interactions control structural and thermal properties of regenerated tri-component blended films. Int J Mol Sci 17:1989. doi:10.3390/ijms17121989

    Article  Google Scholar 

  • Liu X, Zhang K-Q (2014) Silk fiber—molecular formation mechanism, structure-property relationship and advanced applications. Oligomerization of Chemical and Biological Compounds 3

  • Liu Z, Wang H, Li Z, Lu X, Zhang X, Zhang S, Zhou K (2011) Characterization of the regenerated cellulose films in ionic liquids and rheological properties of the solutions. Mater Chem Phys 128:220–227. doi:10.1016/j.matchemphys.2011.02.062

    Article  CAS  Google Scholar 

  • Metzke M, Guan Z (2008) Structure-property studies on carbohydrate-derived polymers for use as protein-resistant biomaterials. Biomacromolecules 9:208–215. doi:10.1021/bm701013y

    Article  CAS  Google Scholar 

  • Nieduszynski I, Preston R (1970) Crystallite size in natural cellulose. Nature 225:273–274. doi:10.1038/225273a0

    Article  CAS  Google Scholar 

  • Saitoh H, Ohshima K-I, Tsubouchi K, Takasu Y, Yamada H (2004) X-ray structural study of noncrystalline regenerated Bombyx mori silk fibroin. Int J Biol Macromol 34:259–265. doi:10.1016/j.ijbiomac.2004.09.003

    Article  Google Scholar 

  • Samayam IP, Hanson BL, Langan P, Schall CA (2011) Ionic-liquid induced changes in cellulose structure associated with enhanced biomass hydrolysis. Biomacromolecules 12:3091–3098. doi:10.1021/bm200736a

    Article  CAS  Google Scholar 

  • Scherrer P (1918) Bestimmung der GrSlIe and der inneren Struktur yon Kolloidteilchen mittels RSntgenstrahlen Nachr Ges Wiss GSttingen, Sitzungsber

  • Su J-F, Huang Z, Yuan X-Y, Wang X-Y, Li M (2010) Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions. Carbohydr Polym 79:145–153. doi:10.1016/j.carbpol.2009.07.035

    Article  CAS  Google Scholar 

  • Sundberg J, Toriz G, Gatenholm P (2015) Effect of xylan content on mechanical properties in regenerated cellulose/xylan blend films from ionic liquid. Cellulose 22:1943–1953. doi:10.1007/s10570-015-0606-2

    Article  CAS  Google Scholar 

  • Szcześniak L, Rachocki A, Tritt-Goc J (2007) Glass transition temperature and thermal decomposition of cellulose powder. Cellulose 15:445–451. doi:10.1007/s10570-007-9192-2

    Article  Google Scholar 

  • Tang J, Tang H, Sun W, Radosz M, Shen Y (2005) Poly(ionic liquid)s as new materials for CO2 absorption. J Polym Sci Part A Polym Chem 43:5477–5489. doi:10.1002/pola.21031

    Article  CAS  Google Scholar 

  • Thomas LH, Forsyth VT, Martel A, Grillo I, Altaner CM, Jarvis MC (2015) Diffraction evidence for the structure of cellulose microfibrils in bamboo, a model for grass and cereal celluloses. BMC Plant Biol 15:1–7. doi:10.1186/s12870-015-0538-x

    Article  CAS  Google Scholar 

  • Thuy Pham TP, Cho C-W, Yun Y-S (2010) Environmental fate and toxicity of ionic liquids: a review. Water Res 44:352–372. doi:10.1016/j.watres.2009.09.030

    Article  Google Scholar 

  • Tomczyńska-Mleko M, Terpiłowski K, Mleko S (2015) Physicochemical properties of cellulose/whey protein fibers as a potential material for active ingredients release. Food Hydrocolloids 49:232–239. doi:10.1016/j.foodhyd.2015.03.027

    Article  Google Scholar 

  • Um IC, Kweon H, Park YH, Hudson S (2001) Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid. Int J Biol Macromol 29:91–97. doi:10.1016/S0141-8130(01)00159-3

    Article  CAS  Google Scholar 

  • Utracki LA (2002) Compatibilization of polymer blends. Can J Chem Eng 80:1008–1016

    Article  CAS  Google Scholar 

  • Vainio U et al (2004) Morphology of dry lignins and size and shape of dissolved kraft lignin particles by X-ray scattering. Langmuir 20:9736–9744. doi:10.1021/la048407v

    Article  CAS  Google Scholar 

  • Vincent JF, Wegst UG (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Dev 33:187–199

    Article  Google Scholar 

  • Wang X, Li H, Cao Y, Tang Q (2011) Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Bioresour Technol 102:7959–7965. doi:10.1016/j.biortech.2011.05.064

    Article  CAS  Google Scholar 

  • Wang Q, Yang Y, Chen X, Shao Z (2012) Investigation of rheological properties and conformation of silk fibroin in the solution of AmimCl. Biomacromolecules 13:1875–1881. doi:10.1021/bm300387z

    Article  CAS  Google Scholar 

  • Wang Q, Chen Q, Yang Y, Shao Z (2013) Effect of various dissolution systems on the molecular weight of regenerated silk fibroin. Biomacromolecules 14:285–289. doi:10.1021/bm301741q

    Article  CAS  Google Scholar 

  • Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO (2015) Bioinspired structural materials. Nat Mater 14:23–36. doi:10.1038/nmat4089

    Article  CAS  Google Scholar 

  • Yin J, Luan S (2016) Opportunities and challenges for the development of polymer-based biomaterials and medical devices. Regen Biomater 3:129–135. doi:10.1093/rb/rbw008

    Article  CAS  Google Scholar 

  • Yoshizawa M, Ohno H (2004) Anhydrous proton transport system based on zwitterionic liquid and HTFSI. Chem Commun. doi:10.1039/B404137B

    Google Scholar 

  • Yuan X, Cheng G (2015) From cellulose fibrils to single chains: understanding cellulose dissolution in ionic liquids. Phys Chem Chem Phys 17:31592–31607. doi:10.1039/C5CP05744B

    Article  CAS  Google Scholar 

  • Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277. doi:10.1021/ma0505676

    Article  CAS  Google Scholar 

  • Zhou L, Wang Q, Wen J, Chen X, Shao Z (2013) Preparation and characterization of transparent silk fibroin/cellulose blend films. Polymer 54:5035–5042. doi:10.1016/j.polymer.2013.07.002

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We would like to acknowledge the funding provided by the Rutgers University-Camden Laboratory Start-up funds, and State of New Jersey ELF Grant to Rutgers-Chemistry. We would like to thank The LRSM at the University of Pennsylvania for allowing us to use the X-Ray Scattering equipment. Finally, we would like to thank Mr. Robert Kristin and Ms. Michel Ntiri for their assistant in preparing the films. The authors would like to thank Fang Wang for her initial support and assistance with DSC analysis. This study was also supported by the Rowan University Start-up Grants, NSF-MRI Program (DMR-1338014) and New Jersey Space Grant Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Salas-de la Cruz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanton, J., Xue, Y., Waters, J.C. et al. Structure–property relationships of blended polysaccharide and protein biomaterials in ionic liquid. Cellulose 24, 1775–1789 (2017). https://doi.org/10.1007/s10570-017-1208-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1208-y

Keywords

Navigation