Skip to main content
Log in

Cellulose nanocrystals grafted with polyacrylamide assisted by macromolecular RAFT agents

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Graft modification is an excellent way to prepare cellulose nanocrystals (CNCs) with various functions. In this work, different water-soluble macro reversible addition fragmentation chain transfer (macroRAFT) agents were used to mediate grafting of polyacrylamide with cellulose nanocrystals. Fourier-transform infrared spectroscopy, 13C solid-state nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy, and elemental analysis were used to characterize the presence of polyacrylamide and quantify its content on the modified cellulose nanocrystals. The results show that two amphiphilic macroRAFTs, namely St5AA14RAFT and St7AA14RAFT, increased the weight ratio of polyacrylamide on the modified cellulose nanocrystals, whereas a corresponding hydrophilic macroRAFT (AA14RAFT) impeded growth of the polymer chains on the cellulose nanocrystals. Examination of the structure of the graft products and the cleaved polyacrylamide chains revealed that the amphiphilic macroRAFTs were involved in the graft reaction through effective chain transfer, thereby increasing the weight ratio of polyacrylamide on the modified CNCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abitbol T, Kloser E, Gray DG (2013) Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20:785–794. doi:10.1007/s10570-013-9871-0

    Article  CAS  Google Scholar 

  • Andreozzi L, Castelvetro V, Ciardelli G, Corsi L, Faetti M, Fatarella E, Zulli F (2005) Free radical generation upon plasma treatment of cotton fibers and their initiation efficiency in surface-graft polymerization. J Colloid Interface Sci 289:455–465. doi:10.1016/j.jcis.2005.03.058

    Article  CAS  Google Scholar 

  • Anzlovar A, Huskic M, Zagar E (2016) Modification of nanocrystalline cellulose for application as a reinforcing nanofiller in PMMA composites. Cellulose 23:505–518. doi:10.1007/s10570-015-0786-9

    Article  CAS  Google Scholar 

  • Barazzouk S, Daneault C (2012) Amino acid and peptide immobilization on oxidized nanocellulose: spectroscopic characterization. Nanomaterials 2:187–205. doi:10.3390/nano2020187

    Article  CAS  Google Scholar 

  • Barsbay M, Gueven O, Davis TP, Barner-Kowollik C, Barner L (2009) RAFT-mediated polymerization and grafting of sodium 4-styrenesulfonate from cellulose initiated via γ-radiation. Polymer 50:973–982. doi:10.1016/j.polymer.2008.12.027

    Article  CAS  Google Scholar 

  • Berlioz S, Molina-Boisseau S, Nishiyama Y, Heux L (2009) Gas-phase surface esterification of cellulose microfibrils and whiskers. Biomacromolecules 10:2144–2151. doi:10.1021/bm900319k

    Article  CAS  Google Scholar 

  • Bondeson D, Oksman K (2007) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interface 14:617–630. doi:10.1163/156855407782106519

    Article  CAS  Google Scholar 

  • Boujemaoui A, Mazieres S, Malmstroem E, Destarac M, Carlmark A (2016) SI-RAFT/MADIX polymerization of vinyl acetate on cellulose nanocrystals for nanocomposite applications. Polymer 99:240–249. doi:10.1016/j.polymer.2016.07.013

    Article  CAS  Google Scholar 

  • Gousse C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651. doi:10.1016/s0032-3861(02)00051-4

    Article  CAS  Google Scholar 

  • Grishkewich N, Akhlaghi SP, Zhaoling Y, Berry R, Tam KC (2016) Cellulose nanocrystal-poly(oligo(ethylene glycol) methacrylate) brushes with tunable LCSTs. Carbohydr Polym 144:215–222. doi:10.1016/j.carbpol.2016.02.044

    Article  CAS  Google Scholar 

  • Gu J, Catchmark JM, Kaiser EQ, Archibald DD (2013) Quantification of cellulose nanowhiskers sulfate esterification levels. Carbohydr Polym 92:1809–1816. doi:10.1016/j.carbpol.2012.10.078

    Article  CAS  Google Scholar 

  • Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542. doi:10.1039/c3cs60204d

    Article  CAS  Google Scholar 

  • Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687. doi:10.1007/s10570-006-9075-y

    Article  CAS  Google Scholar 

  • Hamad WY, Su S (2013) NCC-Based Supramolecular Materials for Thermoplastic and Thermoset Polymer Composites. WO2013037041A1

  • Hebeish A, Farag S, Sharaf S, Shaheen TI (2014) Development of cellulose nanowhisker-polyacrylamide copolymer as a highly functional precursor in the synthesis of nanometal particles for conductive textiles. Cellulose 21:3055–3071. doi:10.1007/s10570-014-0317-0

    Article  CAS  Google Scholar 

  • Hemraz UD, Lu A, Sunasee R, Boluk Y (2014) Structure of poly(N-isopropylacrylamide) brushes and steric stability of their grafted cellulose nanocrystal dispersions. J Colloid Interface Sci 430:157–165. doi:10.1016/j.jcis.2014.05.011

    Article  CAS  Google Scholar 

  • Kan KHM, Li J, Wijesekera K, Cranston ED (2013) Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants. Biomacromolecules 14:3130–3139. doi:10.1021/bm400752k

    Article  CAS  Google Scholar 

  • Keddie DJ, Moad G, Rizzardo E, Thang SH (2012) RAFT agent design and synthesis. Macromolecules 45:5321–5342. doi:10.1021/ma300410v

    Article  CAS  Google Scholar 

  • Kedzior S, Graham L, Cranston ED (2015) One step polymer grafting of poly(methyl methacrylate) from cellulose nanocrystals for composite applications. In: 249th ACS National Meeting and Exposition, Denver, CO, USA, 22–26 Mar 2015. American Chemical Society, p CELL-19

  • Kedzior SA, Graham L, Moorlag C, Dooley BM, Cranston ED (2016) Poly(methyl methacrylate)-grafted cellulose nanocrystals: one-step synthesis, nanocomposite preparation, and characterization. Can J Chem Eng 94:811–822. doi:10.1002/cjce.22456

    Article  CAS  Google Scholar 

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry: fundamentals and analytical methods, vol 1. Wiley-VCH, Chichester

    Book  Google Scholar 

  • Kolya H, Tripathy T (2013) Grafted polysaccharides based on acrylamide and N,N-dimethylacrylamide: preparation and investigation of their flocculation performances. J Appl Polym Sci 127:2786–2795. doi:10.1002/app.37603

    Article  CAS  Google Scholar 

  • Konkolewicz D, Wang Y, Zhong M, Krys P, Isse AA, Gennaro A, Matyjaszewski K (2013) Reversible-deactivation radical polymerization in the presence of metallic copper. A critical assessment of the SARA ATRP and SET-LRP mechanisms. Macromolecules 46:8749–8772. doi:10.1021/ma401243k

    Article  CAS  Google Scholar 

  • Kunze J, Fink H-P (2005) Structural changes and activation of cellulose by caustic soda solution with urea. Macromol Symp 223:175–187. doi:10.1002/masy.200550512

    Article  CAS  Google Scholar 

  • Lapidot S (2015) Nanocrystaline cellulose as absorbent and encapsulation material. WO2015145442A2

  • Li J, Wijesekera K, Kan KHM, Cranston ED (2012) Hydrophobization of nanocrystalline cellulose: a one-step, water-based polymerization method. In: 243rd ACS National Meeting and Exposition, San Diego, CA, USA, 25–29 Mar 2012. American Chemical Society, p CELL-200

  • Luo Y, Wang X, Li B-G, Zhu S (2011) Toward well-controlled ab initio RAFT emulsion polymerization of styrene mediated by 2-(((dodecylsulfanyl)carbonothioyl)sulfanyl)propanoic acid. Macromolecules 44:221–229. doi:10.1021/ma102378w

    Article  CAS  Google Scholar 

  • Luzi F, Fortunati E, Puglia D, Petrucci R, Kenny JM, Torre L (2015) Study of disintegrability in compost and enzymatic degradation of PLA and PLA nanocomposites reinforced with cellulose nanocrystals extracted from Posidonia oceanica. Polym Degrad Stabil 121:105–115. doi:10.1016/j.polymdegradstab.2015.08.016

    Article  CAS  Google Scholar 

  • Majoinen J et al (2011) Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization. Biomacromolecules 12:2997–3006. doi:10.1021/bm200613y

    Article  CAS  Google Scholar 

  • Mangalam AP, Simonsen J, Benight AS (2009) Cellulose/DNA hybrid nanomaterials. Biomacromolecules 10:497–504. doi:10.1021/bm800925x

    Article  CAS  Google Scholar 

  • Matyjaszewski K (2012a) Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45:4015–4039. doi:10.1021/ma3001719

    Article  CAS  Google Scholar 

  • Matyjaszewski K (2012b) Atom transfer radical polymerization: from mechanisms to applications. Isr J Chem 52:206–220. doi:10.1002/ijch.201100101

    Article  CAS  Google Scholar 

  • Moad G, Rizzardo E, Thang SH (2006) Living radical polymerization by the RAFT process-A first update. Aust J Chem 59:669–692. doi:10.1071/ch06250

    Article  CAS  Google Scholar 

  • Moad G, Rizzardo E, Thang SH (2009) Living radical polymerization by the RAFT process—a second update. Aust J Chem 62:1402–1472. doi:10.1071/ch09311

    Article  CAS  Google Scholar 

  • Moad G, Rizzardo E, Thang SH (2012) Living radical polymerization by the RAFT process—a third update. Aust J Chem 65:985–1076. doi:10.1071/ch12295

    Article  CAS  Google Scholar 

  • Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25:8280–8286. doi:10.1021/la900452a

    Article  CAS  Google Scholar 

  • Oyeneye OO, Xu WZ, Charpentier PA (2015) Adhesive RAFT agents for controlled polymerization of acrylamide: effect of catechol-end R groups. RSC Adv 5:76919–76926. doi:10.1039/c5ra16193b

    Article  CAS  Google Scholar 

  • Pracella M, Haque MM-U, Puglia D (2014) Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc. Polymer 55:3720–3728. doi:10.1016/j.polymer.2014.06.071

    Article  CAS  Google Scholar 

  • Qin X, Xia WJ, Sinko R, Keten S (2015) Tuning glass transition in polymer nanocomposites with functionalized cellulose nanocrystals through nanoconfinement. Nano Lett 15:6738–6744. doi:10.1021/acs.nanolett.5b02588

    Article  CAS  Google Scholar 

  • Querejeta-Fernandez A et al (2015) Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles. ACS Nano 9:10377–10385. doi:10.1021/acsnano.5b04552

    Article  CAS  Google Scholar 

  • Ribeiro T, Prazeres TJV, Moffitt M, Farinha JPS (2013) Enhanced photoluminescence from micellar assemblies of cadmium sulfide quantum dots and gold nanoparticles. J Phys Chem C 117:3122–3133. doi:10.1021/jp311200r

    Article  CAS  Google Scholar 

  • Rizzardo E et al (1999) Tailored polymers by free radical processes. Macromol Symp 143:291–307. doi:10.1002/masy.19991430122

    Article  CAS  Google Scholar 

  • Roos K, Planes M, Bakkali-Hassani C, Mehats J, Vax A, Carlotti S (2016) Solvent-free anionic polymerization of acrylamide: a mechanistic study for the rapid and controlled synthesis of polyamide-3. Macromolecules 49:2039–2045. doi:10.1021/acs.macromol.5b02410

    Article  CAS  Google Scholar 

  • Roy D, Guthrie JT, Perrier S (2008) Synthesis of natural-synthetic hybrid materials from cellulose via the RAFT process. Soft Matter 4:145–155. doi:10.1039/b711248n

    Article  CAS  Google Scholar 

  • Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064. doi:10.1039/b808639g

    Article  CAS  Google Scholar 

  • Takacs E, Wojnarovits L, Borsa J, Papp J, Hargittai P, Korecz L (2005) Modification of cotton-cellulose bypreirradiation grafting. Nucl Instrum Methods Phys Res B 236:259–265. doi:10.1016/j.nimb.2005.03.248

    Article  CAS  Google Scholar 

  • Tammelin T, Abburi R, Gestranius M, Laine C, Setala H, Osterberg M (2015) Correlation between cellulose thin film supramolecular structures and interactions with water. Soft Matter 11:4273–4282. doi:10.1039/c5sm00374a

    Article  CAS  Google Scholar 

  • Tang J, Lee MFX, Zhang W, Zhao B, Berry RM, Tam KC (2014) Dual responsive pickering emulsion stabilized by poly[2-(dimethylamino)ethyl methacrylate] grafted cellulose nanocrystals. Biomacromolecules 15:3052–3060. doi:10.1021/bm500663w

    Article  CAS  Google Scholar 

  • Wang H-D, Roeder RD, Whitney RA, Champagne P, Cunningham MF (2015) Graft modification of crystalline nanocellulose by Cu(0)-mediated SET living radical polymerization. J Polym Sci A 1(53):2800–2808. doi:10.1002/pola.27754

    Article  Google Scholar 

  • Yan Q, Yuan J, Kang Y, Yin Y (2010) Synthesis and functions of cellulose graft copolymers. Huaxue Jinzhan 22:449–457

    CAS  Google Scholar 

  • Yang J, Han C-R, Duan J-F, Ma M-G, Zhang X-M, Xu F, Sun R-C (2013) Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals-polyacrylamide nanocomposite hydrogels. Cellulose 20:227–237. doi:10.1007/s10570-012-9841-y

    Article  CAS  Google Scholar 

  • Yang J, Bao Y, Pan P (2014) Ab initio emulsion RAFT polymerization of vinylidene chloride mediated by amphiphilic macro-RAFT agents. J Appl Polym Sci 131:40391/40391–40391/40311. doi:10.1002/app.40391

    Google Scholar 

  • Ye D, Yang J (2015) Ion-responsive liquid crystals of cellulose nanowhiskers grafted with acrylamide. Carbohydr Polym 134:458–466. doi:10.1016/j.carbpol.2015.08.025

    Article  CAS  Google Scholar 

  • Ye D-Y, Yi S-L (2014) Cellulose nanowhiskers’ UV-grafted with acrylic acid and its adsorption performance for Cu2+. Gongneng Cailiao 45:05097–05101. doi:10.3969/j.issn.1001-9731.2014.05.022

    CAS  Google Scholar 

  • Yi J, Xu Q, Zhang X, Zhang H (2009) Temperature-induced chiral nematic phase changes of suspensions of poly(N, N-dimethylaminoethyl methacrylate)-grafted cellulose nanocrystals. Cellulose 16:989–997. doi:10.1007/s10570-009-9350-9

    Article  CAS  Google Scholar 

  • Yu H-Y, Chen G-Y, Wang Y-B, Yao J-M (2015) A facile one-pot route for preparing cellulose nanocrystal/zinc oxide nanohybrids with high antibacterial and photocatalytic activity. Cellulose 22:261–273. doi:10.1007/s10570-014-0491-0

    Article  CAS  Google Scholar 

  • Zeinali E, Haddadi-Asl V, Roghani-Mamaqani H (2014) Nanocrystalline cellulose grafted random copolymers of N-isopropylacrylamide and acrylic acid synthesized by RAFT polymerization: effect of different acrylic acid contents on LCST behavior. RSC Adv 4:31428–31442. doi:10.1039/c4ra05442c

    Article  CAS  Google Scholar 

  • Zhang S-L, Chen W-S, Gan J-H, Jiang Y-J, Lin C-P, Ye D-Y (2014) Polyelectrolyte brush type cellulose nanowhiskers by surface UV grafting with poly(acrylic acid). Jingxi Huagong 31:1120–1125. doi:10.13550/j.jxhg.2014.145

    CAS  Google Scholar 

  • Zhou C, Wu Q, Yue Y, Zhang Q (2010) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Colloid Interface Sci 353:116–123. doi:10.1016/j.jcis.2010.09.035

    Article  Google Scholar 

  • Zoppe JO et al (2010) Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromolecules 11:2683–2691. doi:10.1021/bm100719d

    Article  CAS  Google Scholar 

  • Zoppe JO et al (2014) Synthesis of cellulose nanocrystals carrying tyrosine sulfate mimetic ligands and inhibition of alphavirus infection. Biomacromolecules 15:1534–1542. doi:10.1021/bm500229d

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are sincerely grateful for the financial support from the National Natural Science Foundation of China (no. 21075043) and the Fundamental Research Funds for the Central Universities (No. 2011ZM0008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enyong Ding.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6002 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Xue, F. & Ding, E. Cellulose nanocrystals grafted with polyacrylamide assisted by macromolecular RAFT agents. Cellulose 23, 3717–3735 (2016). https://doi.org/10.1007/s10570-016-1083-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1083-y

Keywords

Navigation