Skip to main content
Log in

Influence of adhesive layer on the stability of kozo paper

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Two types of Japanese papers containing 100 % (JP1) and 50 % (JP2) kozo fibers were treated with different adhesives: methyl-cellulose, rice starch, hydroxypropyl-cellulose and acrylic copolymer. The Fourier transform infrared spectroscopic (FTIR) analysis confirmed the formation of adhesive layer on the surface of papers. The influence of accelerated ageing procedures of moist heat ageing and UV radiation on sample surfaces was established using FTIR and contact angle measurements. The degradation level of papers was studied measuring the intrinsic viscosity and determining the degree of polymerization. Mechanical properties were determined by tensile tests. The results showed that the polar and dispersive components of the surface energy depend strongly on the surface treatments as well as on conditions of ageing. Analysis of degree of polymerization and tensile strength revealed that treatment with methyl-cellulose, rice starch and hydroxypropyl-cellulose reduced degradation of Japanese papers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abdel-Azim A, Atta AM, Farahat MS, Boutros WY (1998) Determination of intrinsic viscosity of polymeric compounds through a single specific viscosity measurement. Polymer 39:6827–6833

    Article  CAS  Google Scholar 

  • Ali M, Emsley AM, Herman H, Heywood RJ (2001) Spectroscopic studies of the ageing of cellulosic paper. Polymer 42:2893–2900

    Article  CAS  Google Scholar 

  • Ayadi F, Bayer IS, Fragouli D, Liakos I, Cingolani R, Athanassiou A (2013) Mechanical reinforcement and water repellency induced to cellulose sheets by a polymer treatment. Cellulose 20:1501–1509

    Article  CAS  Google Scholar 

  • Barsberg S (2010) Prediction of vibrational spectra of polysaccharides—simulated IR spectrum of cellulose based on density functional theory (DFT). J Phys Chem B 114:11703–11708

    Article  CAS  Google Scholar 

  • Battista OA (1989) Cellulose structure and properties. In: Mark HF, Bikales NM, Overberg CG, Menges G (eds) Encyclopedia of polymer science and engineering, 2nd edn. Wiley, New York, pp 90–115

    Google Scholar 

  • Caufild DF, Gunderson DE (1988) Paper testing and strength characteristic. In: TAPPI proceedings of the 1988 paper preservation symposium, Washington, October 19–21

  • Colom X, Carrillo F, Nouges F, Garriga P (2003) Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym Degrad Stab 80:543–549

    Article  CAS  Google Scholar 

  • Heikkila A, Karha P, Tanskanen A, Kaunismaa M, Koskela T, Kaurola Ture JT, Syrjala S (2009) Characterizing a UV chamber with mercury lamps for assessment of comparability to natural UV conditions. Polym Test 28:57–65

    Article  CAS  Google Scholar 

  • ISO 5351 (2010) Pulps-determination of limiting viscosity number in cupriethylendiamine (CED) solution

  • Kamel S, El-Sakhawy M, Nada AM (2004) Mechanical properties of the paper sheets treated with different polymers. Thermochim Acta 421:81–85

    Article  CAS  Google Scholar 

  • Karlovits M, Gregor-Svetec D (2012) Durability of cellulose and synthetic papers exposed to various methods of accelerated ageing. Acta Polytech Hung 9(6):81–100

    Google Scholar 

  • Kavkler K, Demšar D (2012) Application of FTIR and Raman spectroscopy to qualitative analysis of structural changes in cellulosic fibres. Tekstilec 55:19–31

    CAS  Google Scholar 

  • Kim JS, Friend RH, Caciall F (1999) Surface energy and polarity of treated indium–tin–oxide anodes for polymer light-emitting diodes studied by contact-angle measurements. J Appl Phys 86:2774–2778

    Article  CAS  Google Scholar 

  • Koenig JL, D’esposito L, Antoon MK (1977) The ratio method for analyzing infrared spectra of mixtures. Appl Spectrosc 31:292–295

    Article  CAS  Google Scholar 

  • Kondo T, Togawa E, Brown RM (2001) “Nematic ordered cellulose”: a concept of glucan chain association. Biomacromolecules 2:1324–1330. ISSN 1525-7797

  • Lattuati-Derieux A, Bonnassies-Termes S, Lavedrine B (2006) Characterisation of compounds emitted during natural and artificial ageing of a book. Use of headspace-solid-phase microextraction/gas chromatography/mass spectrometry. J Cult Herit 7:123–133

    Article  Google Scholar 

  • Lojewska J, Miskowiec P, Lojewski T, Proniewicz LM (2005) Cellulose oxidative and hydrolytic degradation: in situ FTIR approach. Polym Degrad Stab 88:512–520

    Article  CAS  Google Scholar 

  • Lojewski T, Zieba K, Lojewska J (2010) Size exclusion chromatography and viscometry in paper degradation studies. New Mark–Houwink coefficients for cellulose in cupri-ethylenediamine. J Chromatogr A 1217:6462–6468

    Article  CAS  Google Scholar 

  • Luner PE, Oh E (2001) Characterization of the surface free energy of cellulose ether films. Colloids Surf A 181:31–48

    Article  CAS  Google Scholar 

  • Malešič J, Kolar J, Strlič M, Kočar D, Fromafeot D, Lemaire J, Haillant O (2005) Photo-induced degradation of cellulose. Polym Degrad Stab 89:64–69

    Article  CAS  Google Scholar 

  • Manso M, Carvalho ML (2009) Application of spectroscopic techniques for the study of paper documents: a survey. Spectrochim Acta B 64:482–490

    Article  CAS  Google Scholar 

  • Manso M, Pessanha S, Carvalho ML (2006) Artificial ageing processes in modern papers: X-ray spectrometry studies. Spectrochim Acta B 61:922–928

    Article  CAS  Google Scholar 

  • Marechal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196

    Article  CAS  Google Scholar 

  • Margutti S, Conio G, Calvini P, Pedemonte E (2001) Hydrolytic and oxidative degradation of paper. Restaurator 22:67–83

    CAS  Google Scholar 

  • Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1311–1324

    Article  CAS  Google Scholar 

  • Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromolecules 9:3133–3140

    Article  CAS  Google Scholar 

  • Nissan AH (1977) The elastic modulus of lignin as related to moisture content. Wood Sci Technol 11:147–151

    CAS  Google Scholar 

  • Piantanida G, Bicchieri M, Coluzza C (2005) Atomic force microscopy characterization of the ageing of pure cellulose paper. Polymer 46:12313–12321

    Article  CAS  Google Scholar 

  • Porck HJ (2000) Rate of paper degradation, the predictive value of artificial ageing tests. European Commission on Preservation and Access, Amsterdam

    Google Scholar 

  • Proniewicz LM, Paluszkiewicz C, Weselucha-Birczynska A, Majcherczyk H, Baranski A, Konieczna A (2001) FT-IR and FT-Raman study of hydrothermally degradated cellulose. J Mol Struct 596:163–169

    Article  CAS  Google Scholar 

  • Proniewicz LM, Paluszkiewicz C, Weselucha-Birczynska A, Baranski A, Dutka D (2002) FT-IR and FT-Raman study of hydrothermally degraded groundwood containing paper. J Mol Struct 614:345–353

    Article  CAS  Google Scholar 

  • Shen W, Filonanko Y, Truong Y, Parker IH, Brack N, Pigram P, Liesegang J (2000) Contact angle measurement and surface energetics of sized and unsized paper. Colloids Surf A 173:117–126

    Article  CAS  Google Scholar 

  • Sugiyama J, Vuong R, Chanzy H (1991) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24:2461–2466

    Article  CAS  Google Scholar 

  • Tang J, Chen K, Xu J, Zhao C (2001) Effects of dilute acid hydrolysis on composition and structure of cellulose in Eulaliopsis binate. BioResources 6:1069–1078

    Google Scholar 

  • Wu S (1982) Polymer interface and adhesion. Marcel Dekker, New York, pp 178–181

    Google Scholar 

  • Wu X, Moon RJ, Martini A (2013) Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation. Cellulose 20:43–55

    Article  CAS  Google Scholar 

  • Zervos S (2007) Accelerated ageing kinetics of pure cellulose paper after washing, alkalization and impregnation with methylcellulose. Restaurator 28:55–69

    CAS  Google Scholar 

  • Zervos S (2010) Natural and accelerated ageing of cellulose and paper. In: Lejeune A, Deprez T (eds) Cellulose: structure and properties, derivatives and industrial uses. Nova Science Publ, New York, pp 155–203

    Google Scholar 

  • Zhbankov RG, Firsov SP, Buslov KD, Nikonenko AN, Marchewka MK, Ratajczak H (2002) Structural physic-chemistry of cellulose macromolecules. Vibrational spectra and structure of cellulose. J Mol Struct 614:117–125

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lahorija Bistričić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkalčec, M.M., Bistričić, L. & Leskovac, M. Influence of adhesive layer on the stability of kozo paper. Cellulose 23, 853–872 (2016). https://doi.org/10.1007/s10570-015-0816-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0816-7

Keywords

Navigation