Skip to main content
Log in

Surface modification of cellulose microfibrils by periodate oxidation and subsequent reductive amination with benzylamine: a topochemical study

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Never-dried sulfite wood pulp was beaten and subsequently microfibrillated before being submitted to periodate oxidation for various times. The oxidation progress, which was followed by 13C solid-state NMR spectroscopy in conjunction with degree of oxidation (DO) measurements together with ultrastructural observations, revealed that the cellulose crystallinity and microfibrillar integrity were kept intact until a DO of 0.3/0.4, indicating that at that level, the cellulose microfibrils had been oxidized exclusively at their surface. Beyond this DO value, the sample crystallinity started to deteriorate, as the oxidation progressed toward the core of the microfibrils. Remarkably, throughout the oxidation, the created carbonyl moieties were never observed, as they were readily recombined into hemiacetals by cyclization either within the same anhydro glucose unit (AGU) or with the adjacent un-oxidized AGUs of the same cellulose chain. At DO below 0.3/0.4, hemiacetal coupling with adjacent cellulose chains was also considered, but it appeared unlikely in view of the interchain distance imposed by the crystalline lattice. The oxidized samples were subjected to a reductive amination with benzylamine in order to convert their hydrophilic surfaces into hydrophobic ones. Despite the ease of this derivatization, the analysis of the 13C solid-state NMR spectra of the aminated products showed that, below a DO of 0.3, only half of the hemiacetal moieties could be converted into secondary amine products, whereas the other half remained untouched, likely for steric reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) Grafting. Langmuir 17:21–27

    Article  CAS  Google Scholar 

  • Azzam F, Heux L, Putaux J-L, Jean B (2010) Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals. Biomacromolecules 11:3652–3659

    Article  CAS  Google Scholar 

  • Berlioz S, Molina-Boisseau S, Nishiyama Y, Heux L (2009) Gas-phase surface esterification of cellulose microfibrils and whiskers. Biomacromolecules 10:2144–2151

    Article  CAS  Google Scholar 

  • Bragd PL, van Bekkum H, Besemer AC (2004) TEMPO-mediated oxidation of polysaccharides: survey of methods and applications. Top Catal 27:49–66

    Article  CAS  Google Scholar 

  • Brown RM Jr (1996) The biosynthesis of cellulose. J Macromol Sci Pure Appl Chem A33:1345–1373

    Article  CAS  Google Scholar 

  • Brumer H III, Zhou Q, Baumann MJ, Carlsson K, Teeri TT (2004) Activation of crystalline cellulose surfaces through the chemoenzymatic modification of xyloglucan. J Am Chem Soc 126:5715–5721

    Article  CAS  Google Scholar 

  • Casu B, Naggi A, Torri G, Allegra G, Meille SV, Cosani A, Terbojevich M (1985) Stereoregular acyclic polyalcohols and polyacetates from cellulose and amylose. Macromolecules 18:2762–2767

    Article  CAS  Google Scholar 

  • Cavaillé J-Y, Chanzy H, Fleury E, Sassi J-F (1997) Surface-modified cellulose microfibrils, method for making same, and use thereof as a filler in composite materials. PCT Int Appl, WO 9712917

    Google Scholar 

  • Chanzy H (1990) Aspects of cellulose structure. In: Kennedy JF, Phillips GO, Williams PA (eds) Cellulose sources and exploitation. Industrial utilization biotechnology and physico-chemical properties. Ellis Horwood Ltd., Chichester, pp 3–12

    Google Scholar 

  • Charreau H, Foresti ML, Vazquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 7:56–80

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65

    Article  CAS  Google Scholar 

  • Filpponen I, Kontturi E, Nummelin S, Rosilo H, Kolehmainen E, Ikkala O, Laine J (2012) Generic method for modular surface modification of cellulosic materials in aqueous medium by sequential click reaction and adsorption. Biomacromolecules 13:736–742

    Article  CAS  Google Scholar 

  • Fumagalli M, Ouhab D, Molina-Boisseau S, Heux L (2013a) Versatile gas-phase reactions for surface to bulk esterification of cellulose microfibrils aerogels. Biomacromolecules 14:3246–3255

    Article  CAS  Google Scholar 

  • Fumagalli M, Sanchez F, Molina-Boisseau S, Heux L (2013b) Gas-phase esterification of cellulose nanocrystal aerogels for colloidal dispersion in apolar solvents. Soft Matter 9:11309–11317

    Article  CAS  Google Scholar 

  • Goussé C, Chanzy H, Cerrada ML, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45:1569–1575

    Article  Google Scholar 

  • Guthrie RD (1961) “Dialdehydes” from the periodate oxidation of carbohydrates. Adv Carbohydr Chem 16:105–158

    CAS  Google Scholar 

  • Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4:2238–2244

    Article  CAS  Google Scholar 

  • Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441

    Article  CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813

    CAS  Google Scholar 

  • Heux L, Dinand E, Vignon MR (1999) Structural aspects in ultrathin cellulose microfibrils followed by 13C CP-MAS NMR. Carbohydr Polym 40:115–124

    Article  CAS  Google Scholar 

  • Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212

    Article  CAS  Google Scholar 

  • Hieta K, Kuga S, Usuda M (1984) Electron staining of reducing ends evidences a parallel-chain structure in Valonia cellulose. Biopolymers 23:1807–1810

    Article  CAS  Google Scholar 

  • Hirai A, Horii F, Kitamaru R, Tsuji W (1990) CP/MAS carbon-13 NMR study of never-dried cotton fibers. J Polym Sci Part C Polym Lett 28:357–361

    Article  CAS  Google Scholar 

  • Hou QX, Liu W, Liu ZH, Bai LL (2007) Characteristics of wood cellulose fibers treated with periodate and bisulfite. Ind Eng Chem Res 46:7830–7837

    Article  CAS  Google Scholar 

  • Ishak MF, Painter T (1971) Formation of interresidue hemiacetals during the oxidation of polysaccharides by periodate ion. Acta Chem Scand 25:3875–3877

    Article  CAS  Google Scholar 

  • Jackson EL, Hudson CS (1937) Application of the cleavage type of oxidation by periodic acid to starch and cellulose. J Am Chem Soc 59:2049–2050

    Article  CAS  Google Scholar 

  • Jackson EL, Hudson CS (1938) Structure of the products of the periodic acid oxidation of starch and cellulose. J Am Chem Soc 60:989–991

    Article  CAS  Google Scholar 

  • Kasai W, Morooka T, Ek M (2014) Mechanical properties of films made from dialcohol cellulose prepared by homogeneous periodate oxidation. Cellulose 21:769–776

    Article  CAS  Google Scholar 

  • Kim U-J, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1:488–492

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50:5438–5466

    Article  CAS  Google Scholar 

  • Koyama M, Helbert W, Imai T, Sugiyama J, Henrissat B (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc Natl Acad Sci USA 94:9091–9095

    Article  CAS  Google Scholar 

  • Larsson PT, Westlund PO (2005) Line shapes in CP/MAS 13C NMR spectra of cellulose I. Spectrochim Acta Part A 62A:539–546

    Article  CAS  Google Scholar 

  • Larsson PA, Gimaaker M, Waagberg L (2008) The influence of periodate oxidation on the moisture sorptivity and dimensional stability of paper. Cellulose 15:837–847

    Article  CAS  Google Scholar 

  • Larsson PA, Berglund LA, Wagberg L (2014) Highly ductile fibres and sheets by core-shell structuring of the cellulose nanofibrils. Cellulose 21:323–333

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    Article  CAS  Google Scholar 

  • Liimatainen H, Visanko M, Sirvio JA, Hormi OEO, Niinimaki J (2012) Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation. Biomacromolecules 13:1592–1597

    Article  CAS  Google Scholar 

  • Lindh J, Carlsson DO, Stromme M, Mihranyan A (2014) Convenient one-pot formation of 2,3-dialdehyde cellulose (DAC) beads via periodate oxidation of cellulose in water. Biomacromolecules 15:1928–1932

  • Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaillé JY (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6:2732–2739

    Article  CAS  Google Scholar 

  • Ljungberg N, Cavaillé JY, Heux L (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47:6285–6292

    Article  CAS  Google Scholar 

  • Maekawa E, Koshijima T (1984) Properties of 2,3-dicarboxy cellulose combined with various metallic ions. J Appl Polym Sci 29:2289–2297

    Article  CAS  Google Scholar 

  • Maekawa E, Koshijima T (1991) Preparation and structural consideration of nitrogen-containing derivatives obtained from dialdehyde celluloses. J Appl Polym Sci 42:169–178

    Article  CAS  Google Scholar 

  • Maia J, Carvalho RA, Coelho JFJ, Simoes PN, Gil MH (2011) Insight on the periodate oxidation of dextran and its structural vicissitudes. Polymer 52:258–265

    Article  CAS  Google Scholar 

  • Mazeau K (2005) Structural micro-heterogeneities of crystalline Iβ-cellulose. Cellulose 12:339–349

    Article  CAS  Google Scholar 

  • Montanari S, Roumani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38:1665–1671

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Newman RH, Hemmingson JA (1998) Interactions between locust bean gum and cellulose characterized by carbon-13 NMR spectroscopy. Carbohydr Polym 36:167–172

    Article  CAS  Google Scholar 

  • Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249

    Article  CAS  Google Scholar 

  • Painter TJ, Larsen B (1970) Transient hemiacetal structures formed during the periodate oxidation of xylan. Acta Chem Scand 24:2366–2378

    Article  CAS  Google Scholar 

  • Perlin AS (2006) Glycol-cleavage oxidation. Adv Carbohydr Chem Biochem 60:183–250

    Article  CAS  Google Scholar 

  • Pigman W, Horton D (1972) Structure and sterochemistry of the monosaccharides. In: Pigman W, Horton D (eds) The carbohydrates, chemistry and biochemistry, vol IA, 2nd edn. Academic Press, New York, pp 1–65

    Google Scholar 

  • Potthast A, Rosenau T, Kosma P, Saariaho A-M, Vuorinen T (2005) On the nature of carbonyl groups in cellulosic pulps. Cellulose 12:43–50

    Article  CAS  Google Scholar 

  • Potthast A, Kostic M, Schiehser S, Kosma P, Rosenau T (2007) Studies on oxidative modifications of cellulose in the periodate system: molecular weight distribution and carbonyl group profiles. Holzforschung 61:662–667

    Article  CAS  Google Scholar 

  • Rappe AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  CAS  Google Scholar 

  • Sassi J-F, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2:111–127

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411

    Article  CAS  Google Scholar 

  • Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  • Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111

    Article  CAS  Google Scholar 

  • Symons MCR (1955) Evidence for formation of free-radical intermediates in some reactions involving periodate. J Chem Soc 2794–2796

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  • Varma AJ, Chavan VB, Rajmohanan PR, Ganapathy S (1997) Some observations on the high-resolution solid-state CP-MAS carbon-13 NMR spectra of periodate-oxidized cellulose. Polym Degrad Stab 58:257–260

    Article  CAS  Google Scholar 

  • Yang H, Alam MN, van de Wen TGM (2013) Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers. Cellulose 20:1865–1875

  • Zeronian SH, Hudson FL, Peters RH (1964) The mechanical properties of paper made from periodate oxycellulose pulp and from the same pulp after reduction with borohydride. Tappi 47:557–564

    CAS  Google Scholar 

  • Zhang J, Jiang N, Dang Z, Elder TJ, Ragauskas AJ (2008) Oxidation and sulfonation of cellulosics. Cellulose 15:489–496

    Article  CAS  Google Scholar 

  • Zhao H, Heindel ND (1991) Determination of degree of substitution of formyl groups in polyaldehyde dextran by the hydroxylamine hydrochloride method. Pharm Res 8:400–402

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank H. Chanzy for fruitful discussions during the writing of this work, as well as C. Lancelon-Pin for her assistance in the TEM observation of the cellulose samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Heux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guigo, N., Mazeau, K., Putaux, JL. et al. Surface modification of cellulose microfibrils by periodate oxidation and subsequent reductive amination with benzylamine: a topochemical study. Cellulose 21, 4119–4133 (2014). https://doi.org/10.1007/s10570-014-0459-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0459-0

Keywords

Navigation