Skip to main content
Log in

Multi-technique surface characterization of bio-based films from sisal cellulose and its esters: a FE-SEM, μ-XPS and ToF-SIMS approach

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bio-based films were prepared from LiCl/DMAc solutions containing sisal cellulose esters (acetates, butyrates and hexanoates) with different degrees of substitution (DS 0.7–1.8) and solutions prepared with the cellulose esters and 20 wt% sisal cellulose. A novel approach for characterizing the surface morphology utilized field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and contact angle analysis. XPS and ToF-SIMS were a powerful combination while investigating both the ester group distribution on the surface and effects of cellulose content on the film. The surface coverage by ester aliphatic chains was estimated using XPS measurements. Fibrous structures were observed in the FE-SEM images of the cellulose and bio-based films, most likely because the sisal cellulose chains aggregated during dissolution in LiCl/DMAc. Therefore, the cellulose aggregates remained after the formation of the films and removal of the solvent. The XPS results indicated that the cellulose loading on the longer chain cellulose esters films (DS 1.8) increased the surface coverage by ester aliphatic chains (8.2 % for butyrate and 45 % for hexanoate). However, for the shortest ester chains, the surface coverage decreased (acetate, 42 %). The ToF-SIMS analyses of cellulose acetate and cellulose hexanoate films (DS 1.8) revealed that the cellulose ester groups were evenly distributed across the surface of the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akhlaghi S, Berry R, Tam K (2013) Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose 1–18. doi:10.1007/s10570-013-9954-y

  • Almeida EVR, Morgado DL, Ramos LA, Frollini E (2013) Sisal cellulose and its acetates: generation of films and reinforcement in a one-pot process. Cellulose 20(1):453–465. doi:10.1007/s10570-012-9802-5

    Article  CAS  Google Scholar 

  • Ass BAP, Ciacco GT, Frollini E (2006) Cellulose acetates from linters and sisal: correlation between synthesis conditions in DMAc/LiCl and product properties. Bioresour Technol 97(14):1696–1702. doi:10.1016/j.biortech.2005.10.009

    Article  CAS  Google Scholar 

  • Berthold A, Cremer K, Kreuter J (1996) Preparation and characterization of chitosan microspheres as drug carrier for prednisolone sodium phosphate as model for antiinflammatory drugs. J Controlled Release 39(1):17–25. doi:10.1016/0168-3659(95)00129-8

    Article  CAS  Google Scholar 

  • Bodmeier R, Wang H, Dixon DJ, Mawson S, Johnston KP (1995) Polymeric microspheres prepared by spraying into compressed carbon dioxide. Pharm Res 12(8):1211–1217. doi:10.1023/A:1016276329672

    Article  CAS  Google Scholar 

  • Brown NMD, Hewitt JA, Meenan BJ (1992) X-ray photoelectron spectroscopy and infra-red studies of X-ray-induced beam damage of cellulose, ethyl cellulose and ethyl-hydroxyethyl cellulose. Surf Interface Anal 18(3):199–209. doi:10.1002/sia.740180305

    Article  CAS  Google Scholar 

  • Carlsson CMG, Stroem G (1991) Reduction and oxidation of cellulose surfaces by means of cold plasma. Langmuir 7(11):2492–2497. doi:10.1021/la00059a016

    Article  CAS  Google Scholar 

  • Cheremisinoff NP (2000) Chapter 3—Evaporating and drying equipment. In: Handbook of chemical processing equipment. Butterworth-Heinemann, Woburn, pp 94–161. doi:10.1016/B978-075067126-2.50004-9

  • Crépy L, Chaveriat L, Banoub J, Martin P, Joly N (2009) Synthesis of cellulose fatty esters as plastics—influence of the degree of substitution and the fatty chain length on mechanical properties. ChemSusChem 2(2):165–170. doi:10.1002/cssc.200800171

    Article  Google Scholar 

  • Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Orblin E, Fardim P (2007a) Bi-phobic cellulose fibers derivatives via surface trifluoropropanoylation. Langmuir 23(21):10801–10806. doi:10.1021/la7017192

    Article  CAS  Google Scholar 

  • Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Orblin E, Fardim P (2007b) Characterization and evaluation of the hydrolytic stability of trifluoroacetylated cellulose fibers. J Colloid Interface Sci 316(2):360–366. doi:10.1016/j.jcis.2007.09.002

    Article  CAS  Google Scholar 

  • Dorris GM, Gray D (1978) The surface analysis of paper and wood fibres by ESCA (electron spectroscopy for chemical analysis). i. Application to cellulose and lignin. Cellul Chem Technol 12:14. doi:10.1007/BF00193868

    Google Scholar 

  • Edgar K (2007) Cellulose esters in drug delivery. Cellulose 14(1):49–64. doi:10.1007/s10570-006-9087-7

    Article  CAS  Google Scholar 

  • Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26(9):1605–1688. doi:10.1016/s0079-6700(01)00027-2

    Article  CAS  Google Scholar 

  • El Seoud OA, Marson GA, Ciacco GT, Frollini E (2000) An efficient, one-pot acylation of cellulose under homogeneous reaction conditions. Macromol Chem Phys 201(8):882–889. doi:10.1002/(SICI)1521-3935(20000501)201:8<882:AID-MACP882>3.0.CO;2-I

    Article  Google Scholar 

  • Fardim P, Holmbom B (2005) ToF-SIMS imaging: a valuable chemical microscopy technique for paper and paper coatings. Appl Surf Sci 249(1–4):393–407. doi:10.1016/j.apsusc.2004.12.041

    Article  CAS  Google Scholar 

  • Freire CSR, Silvestre AJD, Pascoal Neto C, Gandini A, Fardim P, Holmbom B (2006) Surface characterization by XPS, contact angle measurements and ToF-SIMS of cellulose fibers partially esterified with fatty acids. J Colloid Interface Sci 301(1):205–209. doi:10.1016/j.jcis.2006.04.074

    Article  CAS  Google Scholar 

  • Goacher RE, Edwards EA, Yakunin AF, Mims CA, Master ER (2012) Application of time-of-flight-secondary ion mass spectrometry for the detection of enzyme activity on solid wood substrates. Anal Chem 84(10):4443–4451. doi:10.1021/ac3005346

    Article  CAS  Google Scholar 

  • Gomes GS, de Almeida AT, Kosaka PM, Rogero SO, Cruz AS, Ikeda TI, Petri DFS (2007) Cellulose acetate propionate coated titanium: characterization and biotechnological application. Mater Res 10(4):5. doi:10.1590/S1516-14392007000400023

    Article  Google Scholar 

  • Grundke K, Bogumil T, Werner C, Janke A, Pöschel K, Jacobasch HJ (1996) Liquid-fluid contact angle measurements on hydrophilic cellulosic materials. Colloids Surf A 116(1–2):79–91. doi:10.1016/0927-7757(96)03587-X

    Article  CAS  Google Scholar 

  • Guezguez I, Mrabet B, Ferjani E (2013) XPS and contact angle characterization of surface modified cellulose acetate membranes by mixtures of PMHS/PDMS. Desalination 313:208–211. doi:10.1016/j.desal.2012.11.018

    Article  CAS  Google Scholar 

  • Heinze T, Liebert TF, Pfeiffer KS, Hussain MA (2003) Unconventional cellulose esters: synthesis. Characterization and structure-property relations. Cellulose 10(3):283–296. doi:10.1023/a:1025117327970

    Article  CAS  Google Scholar 

  • Jung S, Foston M, Kalluri UC, Tuskan GA, Ragauskas AJ (2012) 3D chemical image using TOF-SIMS revealing the biopolymer component spatial and lateral distributions in biomass. Angew Chem Int Ed 51(48):12005–12008. doi:10.1002/anie.201205243

    Article  CAS  Google Scholar 

  • Kim J, Cai Z, Chen Y (2010) Biocompatible bacterial cellulose composites for biomedical application. J Nanotechnol Eng Med 1 (1). doi:10.1115/1.4000062

  • Kovač J (2011) Surface characterization of polymers by XPS and SIMS techniques. Materiali in Tehnologije 45(3):191–197

    Google Scholar 

  • Lacerda TM, Zambon MD, Frollini E (2013) Effect of acid concentration and pulp properties on hydrolysis reactions of mercerized sisal. Carbohydr Polym. doi:10.1016/j.carbpol.2012.10.039

  • Meier MM, Kanis LA, Soldi V (2004) Characterization and drug-permeation profiles of microporous and dense cellulose acetate membranes: influence of plasticizer and pore forming agent. Int J Pharmaceutics 278(1):99–110. doi:10.1016/j.ijpharm.2004.03.005

    Article  CAS  Google Scholar 

  • Mohanty AK, Wibowo A, Misra M, Drzal LT (2004) Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites. Compos A Appl Sci Manuf 35(3):363–370. doi:10.1016/j.compositesa.2003.09.015

    Article  Google Scholar 

  • Morgado DL, Frollini E, Castellan A, Rosa DS, Coma V (2011) Biobased films prepared from NaOH/thiourea aqueous solution of chitosan and linter cellulose. Cellulose 18(3):699–712. doi:10.1007/s10570-011-9516-0

    Article  CAS  Google Scholar 

  • Morgado DL, Rodrigues BVM, Almeida EVR, El Seoud OA, Frollini E (2013) Bio-based films from linter cellulose and its acetates: formation and properties. Mater 6 (Adv Cellul Mater):25. doi:10.3390/ma6062410

  • Orblin E, Fardim P (2010) Surface chemistry of deinked pulps as analysed by XPS and ToF-SIMS. Surf Interface Anal 42(12–13):1712–1722. doi:10.1002/sia.3500

    Article  CAS  Google Scholar 

  • Orblin E, Eta V, Fardim P (2011) Surface chemistry of vessel elements by FE-SEM, μ-XPS and ToF-SIMS. Holzforschung 65(5):681–688. doi:10.1515/HF.2011.064

    Article  CAS  Google Scholar 

  • Östlund Å, Idström A, Olsson C, Larsson P, Nordstierna L (2013) Modification of crystallinity and pore size distribution in coagulated cellulose films. Cellulose:1-11. doi:10.1007/s10570-013-9982-7

  • Ramos LA, Assaf JM, El Seoud OA, Frollini E (2005) Influence of the supramolecular structure and physicochemical properties of cellulose on its dissolution in a lithium chloride/N,N-dimethylacetamide solvent system. Biomacromolecules 6(5):2638–2647. doi:10.1021/bm0400776

    Article  CAS  Google Scholar 

  • Ramos L, Morgado D, El Seoud O, da Silva V, Frollini E (2011a) Acetylation of cellulose in LiCl-N, N -dimethylacetamide: first report on the correlation between the reaction efficiency and the aggregation number of dissolved cellulose. Cellulose 18(2):385–392. doi:10.1007/s10570-011-9496-0

    Article  CAS  Google Scholar 

  • Ramos LA, Morgado DL, Gessner F, Frollini E, El Seoudb OA (2011b) A physical organic chemistry approach to dissolution of cellulose: effects of cellulose mercerization on its properties and on the kinetics of its decrystallization. Arkivoc 7:416–425. doi:10.3998/ark.5550190.0012.734

    Article  Google Scholar 

  • Regiani AM, Frollini E, Marson GA, Guilherme M, Seoud OAEL (1999) Some aspects of acylation of cellulose under homogeneous solution conditions. J Polym Sci, Part A: Polym Chem 37(9):1357–1363. doi:10.1002/(SICI)1099-0518(19990501)37:9<1357:AID-POLA16>3.0.CO;2-Y

    Article  CAS  Google Scholar 

  • Saito K, Kato T, Takamori H, Kishimoto T, Fukushima K (2005) A new analysis of the depolymerized fragments of lignin polymer using ToF-SIMS. Biomacromolecules 6(5):2688–2696

    Article  CAS  Google Scholar 

  • Saito K, Kato T, Takamori H, Kishimoto T, Yamamoto A, Fukushima K (2006) A new analysis of the depolymerized fragments of lignin polymer in the plant cell walls using ToF-SIMS. Appl Surf Sci 252(19):6734–6737. doi:10.1016/j.apsusc.2006.02.163

    Article  CAS  Google Scholar 

  • Sibani B, Sandhyamayee S, Sabita P, Bijay MK (2012) Sisal fiber: a potential raw material for handmade paper. IPPTA 24(2):8

    Google Scholar 

  • Smith M (1997) The U.S. Paper industry and sustainable production: an argument for restructuring United States of America

  • TAPPI P (1994) Surface Wettability of Paper. T458 om-94

  • Tokareva EN, Pranovich AV, Fardim P, Daniel G, Holmbom B (2007) Analysis of wood tissues by time-of-flight secondary ion mass spectrometry. Holzforschung 61(6):647–655. doi:10.1515/HF.2007.119

    Article  CAS  Google Scholar 

  • Tokareva EN, Pranovich AV, Holmbom BR (2011) Characteristic fragment ions from lignin and polysaccharides in ToF-SIMS. Wood Sci Technol 45(4):767–785. doi:10.1007/s00226-010-0392-9

    Article  CAS  Google Scholar 

  • Vo LTT, Široká B, Manian AP, Duelli H, MacNaughtan B, Noisternig MF, Griesser UJ, Bechtold T (2013) All-cellulose composites from woven fabrics. Compos Sci Technol 78:30–40. doi:10.1016/j.compscitech.2013.01.018

    Article  CAS  Google Scholar 

  • Wang FJ, Yang YY, Zhang XZ, Zhu X, Chung TS, Moochhala S (2002) Cellulose acetate membranes for transdermal delivery of scopolamine base. Mater Sci Eng, C 20(1–2):93–100. doi:10.1016/S0928-4931(02)00018-8

    Article  Google Scholar 

  • Yang ZY, Wang WJ, Shao ZQ, Zhu HD, Li YH, Wang FJ (2013) The transparency and mechanical properties of cellulose acetate nanocomposites using cellulose nanowhiskers as fillers. Cellulose 20(1):159–168. doi:10.1007/s10570-012-9796-z

    Article  Google Scholar 

  • Zhang L, Ruan D, Zhou J (2001) Structure and properties of regenerated cellulose films prepared from cotton linters in NaOH/urea aqueous solution. Ind Eng Chem Res 40(25):5923–5928. doi:10.1021/ie0010417

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge FAPESP (The Sate of São Paulo Research Foundation, Brazil) for the fellowships of B. V. M. R. (proc. 2010/00005-4 and 2012/00813-9) and financial support, as well as the CNPq (National Research Council, Brazil) for the research productivity fellowship of E.F. and financial support. We also thank Top Analytica Ltd (Turku - Finland) for providing us with the XPS and ToF-SIMS instruments and M. Sc. Linus Silvander (Research Assistant at Åbo Akademi Process Chemistry Centre c/o Combustion and Materials Chemistry) for taking the FE-SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elisabete Frollini or Pedro Fardim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, B.V.M., Heikkilä, E., Frollini, E. et al. Multi-technique surface characterization of bio-based films from sisal cellulose and its esters: a FE-SEM, μ-XPS and ToF-SIMS approach. Cellulose 21, 1289–1303 (2014). https://doi.org/10.1007/s10570-014-0216-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0216-4

Keywords

Navigation