Skip to main content
Log in

Alkaline steeping of dissolving pulp. Part I: cellulose degradation kinetics

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The production of cellulosic man made fibres by the viscose process has been known for more than 120 years now, but still some aspects are not sufficiently understood in detail. The carbohydrates in the pulp are exposed to varying conditions during the manufacturing process. In the first production step of steeping, the strong alkaline treatment leads to undesirable loss reactions of the cellulose. In this study, a comprehensive kinetic model was developed for process simulation of cellulose degradation for the fist time comprising primary and secondary peeling, stopping and alkaline hydrolysis. A total chlorine free bleached beech sulfite pulp was treated with 18 % sodium hydroxide at 40, 50 and 60 °C for time periods up to 80 h. The corresponding reaction rates, activation energies and frequency factors for all reaction steps were calculated. The peeling-off reaction was of great significance for the cellulose yield loss, due to a contribution of the secondary peeling after random chain scission. The moderate decrease of the intrinsic viscosity and the changes in molar mass distribution indicated the validity of the assumption. Further, a reduction of the carbonyl and an increase of the carboxyl groups in the cellulose were observed due to the formation of the stable metasaccharinic acid at the reducing ends of the molecules. The fibre morphology was investigated by SEM measurements. Already short alkaline treatment times favored the dissolution of fibril fragments from the fibre surface leading to a smooth fibre surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BAR:

Benzilic acid rearrangement

CCOA:

Carbazole-9-carbonyloxyamine

D :

Overall carbohydrate yield loss

DMAc:

N,N-Dimethylacetamide

DP:

Degree of polymerisation

FDAM:

9H-fluoren-2-yl-diazomethane

FE-SEM:

Scanning electron microscope

H :

Material degraded by hydrolysis

HPLC:

High performance liquid chromatography

ISA:

Isosaccharinic acid

k h :

Rate constant of the alkaline hydrolysis

k p :

Rate constant of the peeling reaction

k s :

Rate constant of the stopping reaction

MALLS:

Multi-angle laser light scattering

MSA:

Metasaccharinic acid

MB:

Methylene blue

MMD:

Molar mass distribution

Mn:

Number-average molecular weight

Mw:

Weight-average molecular weight

Odp:

Oven dried pulp

P :

Mole fraction of peeled-off material

PAD:

Pulsed amperometric detection

PDI:

Polydispersity index

R :

Amount of reducing end groups

R 0 :

Initial reducing end group mole fraction

REG:

Reducing end group

SEC:

Size exclusion chromatography

TCF:

Total chlorine free

WRV:

Water retention value

Γ0 :

Initial amount of the carbohydrates

η:

Intrinsic viscosity

References

  • Barthel P, Philipp B (1967) Untersuchungen zum Abbauverlauf bei der Alkalicellulose-Vorreife verschiedenartiger Zellstoffe. Faserforschung und Textiltechnik 18(6):266–273 (537–538)

    CAS  Google Scholar 

  • Bohrn R, Potthast A, Schiehser S, Rosenau T, Sixta H, Kosma P (2006) The FDAM method: determination of carboxyl profiles in dellulosic materials by combining group-selective fluorescence labeling with GPC. Biomacromolecules 7(6):1743–1750

    Article  CAS  Google Scholar 

  • Bywater N (2011) The global viscose fibre industry in the 21st century—the first 10 years. Lenzinger Berichte 89:22–29

    Google Scholar 

  • Colbran RL, Davidson GF (1961) The degradative action of hot dilute alkalis on hydrocellulose. J Text Inst 52:T73–T87

    Article  CAS  Google Scholar 

  • Davidson GF (1934a) The dissolution of chemically modified cotton cellulose in alkaline solutions. Part I—in solutions of sodium hydroxide particularly at temperatures below the mormal. J Text Inst 25:T174–T196

    Article  CAS  Google Scholar 

  • Davidson GF (1934b) The dissolution of chemically modified cotton cellulose in alkaline solutions. Part I—in solutions of sodium hydroxide particularly at temperatures below the mormal. J Text Inst 25:T174–T196

    Article  CAS  Google Scholar 

  • Eichinger D (2012) A vision of the world of cellulosic fibers in 2020. Lenzinger Berichte 90:1–7

    Google Scholar 

  • Entwistle D, Cole EH, Wooding NS (1949) The autoxidation of alkali cellulose. Part I: an experimental study of the kinetics of the reaction. Text Res J 19(9):527–546

    Article  CAS  Google Scholar 

  • Franzon O, Samuelson O (1957) Degradation of cellulose by alkali cooking. Sven Papperstidn 60(23):872–877

    CAS  Google Scholar 

  • Glaus MA, Van Loon LR (2004) Technical report 03–08: cellulose degradation at alkaline conditions: long-term experiments at elevated temperatures, Hannover

  • Glaus MA, Van Loon LR (2008) Degradation of cellulose under alkaline conditions: new insights from a 12 years degradation study. Environ Sci Technol 42:2906–2911

    Article  CAS  Google Scholar 

  • Glaus MA, Van Loon LR, Achatz S, Chodura A, Fischer K (1999) Degradation of cellulosic materials under the alkaline conditions of a cementitious repository for low and intermediate level radioactive waste Part I: identification of degradation products. Anal Chim Acta 398:111–122

    Article  CAS  Google Scholar 

  • Götze K (1967) Chemiefasern nach dem Viskoseverfahren. Springer, Berlin

    Google Scholar 

  • Haas DW, Hrutfiord BF, Sarkanen KV (1967) Kinetic study on the alkaline degradation of cotton hydrocellulose. J Appl Polym Sci 11:587

    Article  CAS  Google Scholar 

  • Hämmerle FM (2011) The cellulose gap (the future of cellulose fibres). Lenzinger Berichte 89:12–21

    Google Scholar 

  • Johansson MH, Samuelson O (1975) End-wise degradation of hydrocellulose during hot alkali treatment. J Appl Polym Sci 19:3007–3013

    Article  CAS  Google Scholar 

  • Kolpak FJ, Weih M, Blackwell J (1978) Mercerization of cellulose: 1. Determination of the structure of mercerized cotton. Polymer 19(2):123–131

    Article  CAS  Google Scholar 

  • Krässig HA (1993) Cellulose: structure, accessibility and reactivity; methods of activation. Polymer monographs, vol 11. Gordon and Breach Science Publishers, Yverdon, Switzerland

  • Lai YZ (1981) In: International symposium on wood and pulping chemistry, Stockholm, The Ekman Days, vol 2. pp 26–33

  • Lai YZ (1996) Reactivity and accessibility of cellulose, hemicelluloses, and lignins. In: Hon DN-S (ed) Chemical modification of lignocellulosic materials. Marcel Dekker, New York, pp 35–95

    Google Scholar 

  • Lai YZ, Ontto DE (1979) Effects of alkalinity on endwise depolymerisation of hydrocellulose. J Appl Polym Sci 23:3219–3225

    Article  CAS  Google Scholar 

  • Lai Y-Z, Sarkanen KV (1967) Kinetics of alkaline hydrolysis of glycosidic bonds in cotton cellulose. Cellul Chem Technol 1:517–527

    CAS  Google Scholar 

  • Lai Y-Z, Sarkanen KV (1969) Kinetic study on the alkaline degradation of amylose. J Polym Sci C 28:15–26

    Article  Google Scholar 

  • Machell G, Richards GN (1957) The alkaline degradation of polysaccharides. Part II. The alkali-stable residue from the action of sodium hydroxide on cellulose. J Chem Soc 4500–4506

  • Mais U, Sixta H (2004) Characterization of alkali-soluble hemicelluloses of hardwood dissolving pulps. In: ACS Symposium Series, vol 864 (Hemicelluloses), pp 94–107

  • Nevell TP, Zeronian SH (eds) (1985) Cellulose chemistry and its applications. Ellis Horwood, Chichester

    Google Scholar 

  • Niemelä K, Sjöström E (1986) The conversion of cellulose into carboxylic acids by a drastic alkali treatment. Biomass 11:215–221

    Article  Google Scholar 

  • Okamoto T, Meshitsuka G (2010) The nanostructure of kraft pulp 1: evaluation of various mild drying methods using field emission scanning electron microscopy. Cellulose 17:1171–1182

    Article  CAS  Google Scholar 

  • Paananen M, Tamminen T, Nieminen K, Sixta H (2010) Galactoglucomannan stabilization during the initial kraft cooking of scots pine. Holzforschung 64:683–692

    Article  CAS  Google Scholar 

  • Pavasars I, Hagberg J, Borén H, Allard B (2003) Alkaline degradation of cellulose: mechanisms and kinetics. J Polym Environ 11(2):1015–2636

    Article  Google Scholar 

  • Philipp B, Rehder W, Lang H (1965) Zur Carboxylbestimmung in Chemiezellstoffen. Das Papier 19(1):1–9

    CAS  Google Scholar 

  • Potthast A, Rosenau T, Kosma P (2006) Analysis of oxidized functionalities in cellulose. Adv Polym Sci 205:1–48

    Article  CAS  Google Scholar 

  • Richards GN, Sephton HH (1957) The alkaline degradation of polysaccharides. Part I. Soluble products of the action of sodium hydroxide on cellulose. J Chem Soc 4492–4499

  • Richtzenhain H, Lindgren BO, Abrahamsson B, Holmberg K (1954) Über den alkalischen Abbau von Polysacchariden. I. Mitteil. Abbau von Baumwollhydrocellulose. Svensk Papperstidning 57(10):363–366

    Google Scholar 

  • Röhrling J, Potthast A, Rosenau T, Sixta H, Kosma P (2002) Determination of carbonyl functions in cellulosic substrates. Lenzinger Berichte 81:89–97

    Google Scholar 

  • Schelosky N, Röder T, Baldinger T, Milacher W, Morgenstern B, Sixta H (1999) Molecular mass distribution of cellulosic products by size exclusion chromatography in DMAc/LiCl. Das Papier 12(12):728–738

    Google Scholar 

  • Schild G, Sixta H (2011) Sulfur-free dissolving pulps and their application for viscose and lyocell. Cellulose 18:1113–1128

    Article  CAS  Google Scholar 

  • Shen L, Patel MK (2010) Life cycle assessment of man-made cellulose fibres. Lenzinger Berichte 88:1–59

    CAS  Google Scholar 

  • Sixta H, Schelosky N, Milacher W, Baldinger T, Röder T (2001) Characterization of alkali-soluble pulp fractions by chromatography. 11th ISWPC, vol 3. Nice, France

  • Sjöström E (1977) The behavior of wood polysaccharides during alkaline pulping processes. Tappi 60(9):151–157

    Google Scholar 

  • Sjöström E (1991) Carbohydrate degradation products from alkaline treatment of biomass. Biomass Bioenergy 1(1):61–64

    Article  Google Scholar 

  • Tatevosyan EL, Makarova TP, Meos AI (1965) Characteristics of alkali cellulose obtained by a continuous process. Khim Volokna 4:26–29

    Google Scholar 

  • Testova L, Nieminen K, Penttilä PA, Serimaa R, Potthast A, Sixta H (2013) Cellulose degradation in alkaline media upon acidic pretreatment and stabilisation. Carbohydr Polym. doi:10.1016/j.carbpol.2013.01.093

  • Van Loon LR, Glaus MA (1997) Review of the kinetics of alkaline degradation of cellulose in view of its relevance for safety assessment of radioactive waste repositories. J Environ Polym Degrad 5(2):97–109

    Article  Google Scholar 

  • Van Loon LR, Glaus MA, Laube A, Stallone S (1999) Degradation of cellulosic materials under the alkaline conditions of a cementitious repository for low- and intermediate-level radioactive waste. II. Degradation kinetics. J Environ Polym Degrad 7(1):41–51

    Article  Google Scholar 

  • Whistler RL (1963) Methods in carbohydrate chemistry, vol 3. Academic Press, New York

    Google Scholar 

  • Wollboldt RP, Zuckerstätter G, Weber HK, Larsson PT, Sixta H (2010) Accessibility, reactivity and supramolecular structure of E. globulus pulps with reduced xylan content. Wood Sci Technol 44:533–546

    Article  CAS  Google Scholar 

  • Young RA, Sarkanen KV, Johnson G (1972) Marine plant polymers Part III. A kinetic analysis of the alkaline degradation of the polysaccharides with specific reference to (1→3)-beta-D-glucans. Carbohyd Res 21:111–122

    Article  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the Austrian government, the provinces of lower Austria, upper Austria, and Carinthia as well as by Lenzing AG. We also express our gratitude to the Johannes Kepler University, Linz, the University of Natural Resources and Applied Life Sciences, Vienna, and Lenzing AG for their in-kind contributions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Sixta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mozdyniewicz, D.J., Nieminen, K. & Sixta, H. Alkaline steeping of dissolving pulp. Part I: cellulose degradation kinetics. Cellulose 20, 1437–1451 (2013). https://doi.org/10.1007/s10570-013-9926-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-9926-2

Keywords

Navigation