Skip to main content
Log in

Crosslinked nanofibrillated cellulose: poly(acrylic acid) nanocomposite films; enhanced mechanical performance in aqueous environments

  • Original paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Nanofibrillated cellulose (NFC) was compounded with poly(acrylic acid) (PAA) via solvent casting. Nanocomposite films were thermally-crosslinked to allow the formation of ester bonds between NFC and PAA, as confirmed by 13CNMR and infrared spectroscopy. The network morphology of the cellulose nanofibrils was left intact by the introduction of PAA and crosslinking. Water absorption and swelling was diminished by the introduction of crosslinking, due to the reduced number of vacant hydroxyl and carboxyl groups available to interact with water molecules. Crosslinking with PAA increased the activation energy required for thermal degradation. PAA effectively reinforced NFC, increasing Young’s modulus, tensile strength and glass transition temperature. Crosslinking imparted restraints on segmental motion of polymer chains, further enhancing the thermomechanical properties and retaining elasticity. Wet-strength properties were enhanced due to the reduced hydrophilicity of crosslinked nanocomposite films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Turaif HA (2013) Relationship between tensile properties and film formation kinetics of epoxy resin reinforced with nanofibrillated cellulose. Prog Org Coat 76:477

    Article  CAS  Google Scholar 

  • Area MC, Cheradame H (2011) Paper aging and degradation: recent findings and research methods. Bioresources 6:5307–5337

    CAS  Google Scholar 

  • Baştürk E, Demir S, Daniş Ö, Kahraman MV (2013) Covalent immobilization of α-amylase onto thermally crosslinked electrospun PVA/PAA nanofibrous hybrid membranes. J Appl Polym Sci 127:349–355

    Article  Google Scholar 

  • Cho M, Park B (2011) Tensile and thermal properties of nanocellulose-reinforced poly(vinyl alcohol) nanocomposites. J Indust Eng Chem 17:36–40

    Article  CAS  Google Scholar 

  • Chung H, Woo K, Lim S (2004) Glass transition and enthalpy relaxation of cross-linked corn starches. Carbohydr Polym 55:9–15

    Article  CAS  Google Scholar 

  • Clemons C, Sedlmair J, Illman B, Ibach R, Hirschmugl C (2013) Chemically imaging the effects of the addition of nanofibrillated cellulose on the distribution of poly(acrylic acid) in poly(vinyl alcohol). Polymer 54:2058–2061

    Article  CAS  Google Scholar 

  • Dubinsky S, Grader GS, Shter GE, Silverstein MS (2004) Thermal degradation of poly(acrylic acid) containing copper nitrate. Polym Degrad Stab 86:171–178

    Article  CAS  Google Scholar 

  • Dubolazov A, Nurkeeva Z, Mun G, Khutoryanskiy V (2006) Design of mucoadhesive polymeric films based on blends of poly(acrylic acid) and (hydroxypropyl) cellulose. Biomacromolecules 7:1637–1643

    Article  CAS  Google Scholar 

  • Dutta J (2012) Synthesis and characterization of γ-irradiated PVA/PEG/CaCl2 hydrogel for wound dressing. Amer J Chem 2:6–11

    Article  Google Scholar 

  • Endo R, Saito T, Isogai A (2013) TEMPO-oxidized cellulose nanofibril/poly(vinyl alcohol) composite drawn fibers. Polymer 54:935

    Article  CAS  Google Scholar 

  • Eyholzer C, Bordenau N, Lopez-Suevos F, Rentsch D, Zimmermann T, Oksman K (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17:19–30

    Article  CAS  Google Scholar 

  • Fox DM, Lee J, Zammarano M, Katsoulis D, Eldred DV, Haverhals LM, Trulove PC, De Long HC, Gilman JW (2012) Char-forming behavior of nanofibrillated cellulose treated with glycidyl phenyl POSS. Carbohydr Polym 88:847–858

    Article  CAS  Google Scholar 

  • Fujisawa S, Ikeuchi T, Takeuchi M, Saito T, Isogai A (2012) Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. Biomacromolecules 13:2188–2194

    Article  CAS  Google Scholar 

  • Gärdlund L, Wågberg L, Gernandt R (2003) Polyelectrolyte complexes for surface modification of wood fibres: II. Influence of complexes on wet and dry strength of paper. Colloids Surf Physicochem Eng Aspects 218:137–149

    Article  Google Scholar 

  • Gilardi G, Abis L, Cass AEG (1995) Carbon-13 CP/MAS solid-state NMR and FT-IR spectroscopy of wood cell wall biodegradation. Enzyme Microb Technol 17:268–275

    Article  CAS  Google Scholar 

  • Hubbe M (2006) Bonding between cellulosic fibers in the absence and presence of dry-strength agents—a review. Bioresources 1:281–318

    Google Scholar 

  • Jafarpour G, Roig F, Dantras E, Boudet AM, Lacabanne C (2007) Influence of water on localized and delocalized molecular mobility of cellulose. J Non-Cryst Sol 3:4108–4115

    Article  Google Scholar 

  • Kennedy JE, Lyons JG, Geever LM, Higginbotham CL (2009) Synthesis and characterisation of styrene butadiene styrene-g-acrylic acid for potential use in biomedical applications. Mater Sci Eng, C 29:1655–1661

    Article  CAS  Google Scholar 

  • Kim DS, Park HB, Rhim JW, Lee YM (2005) Proton conductivity and methanol transport behavior of cross-linked PVA/PAA/silica hybrid membranes. Solid State Ionics 176:117–126

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Inter Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Kondo T (1997) The assignment of IR absorption bands due to free hydroxyl groups in cellulose. Cellulose 4:281–292

    Article  CAS  Google Scholar 

  • Kondo T, Sawatari C (1996) A Fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose. Polymer 37:393–399

    Article  CAS  Google Scholar 

  • Kono H, Yunoki S, Shikano T, Fujiwara F, Erata T, Takai M (2002) CP/MAS 13C NMR study of cellulose and cellulose derivatives. 1. Complete assignment of the CP/MAS 13C NMR spectrum of the native cellulose. J Am Chem Soc 124:7506–7511

    Article  CAS  Google Scholar 

  • Kučerová I, Ohlídalová M, Novotná M, Michalcová A (2007) Examination of corroded wood by ammonium phosphate and sulphate-based fire retardants—the results of the prague castle roof timber examination ICOMOS IWC - XVI International Symposium, Florence, Venice and Vicenza, 11th–16th Nov 2007, pp 1–4

  • Kumeta K, Nagashima I, Matsui S, Mizoguchi K (2003) Crosslinking reaction of poly(vinyl alcohol) with poly(acrylic acid) (PAA) by heat treatment: effect of neutralization of PAA. J Appl Polym Sci 90:2420–2427

    Article  CAS  Google Scholar 

  • Lee S, Mohan DJ, Kang I, Doh G, Lee S, Han S (2009) Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fiber Polym 10:77–82

    Article  CAS  Google Scholar 

  • Li L, Hsieh Y (2005) Ultra-fine polyelectrolyte hydrogel fibres from poly(acrylic acid)/poly(vinyl alcohol). Nanotechnology 16:2852

    Article  CAS  Google Scholar 

  • Littunen K, Hippi U, Saarinen T, Seppälä J (2013) Network formation of nanofibrillated cellulose in solution blended poly(methyl methacrylate) composites. Carbohydr Polym 91:183

    Article  CAS  Google Scholar 

  • Liu A, Walther A, Ikkala O, Belova L, Berglund LA (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12:633–641

    Article  CAS  Google Scholar 

  • Loría-Bastarrachea MI, Carrillo-Escalante HJ, Aguilar-Vega MJ (2002) Grafting of poly(acrylic acid) onto cellulosic microfibers and continuous cellulose filaments and characterization. J Appl Polym Sci 83:386–393

    Article  Google Scholar 

  • Lu P, Hsieh L (2009) Cellulose nanocrystal-filled poly(acrylic acid) nanocomposite fibrous membranes. Nanotechnology 20:415604

    Article  Google Scholar 

  • Luo H, Hu J, Zhu Y, Wu J, Zhang S, Fan Y, Ye G (2013) Mechanically adaptive cellulose-poly(acrylic acid) polymeric composites in wet/dry cycles. J Appl Polym Sci 127:675–681

    Article  CAS  Google Scholar 

  • Maeda S, Fujiwara Y, Sasaki C, Kunimoto Ko-Ki (2011) Structural analysis of microbial poly(ε- l -lysine)/poly(acrylic acid) complex by FT-IR, DSC, and solid-state 13C and 15N NMR. Polym J 44:200–203

    Article  Google Scholar 

  • McNeill IC, Sadeghi SMT (1990) Thermal stability and degradation mechanisms of poly(acrylic acid) and its salts: part 1—poly(acrylic acid). Polym Degrad Stab 29:233–246

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Myllytie P, Salmén L, Haimi E, Laine J (2010) Viscoelasticity and water plasticization of polymer-cellulose composite films and paper sheets. Cellulose 17:375–385

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A 80:155–159

    Article  CAS  Google Scholar 

  • Nikolaeva O, Budtova T, Alexeev V, Frenkel S (2000) Interpolymer complexation between polyacrylic acid and cellulose ethers: formation and properties. J Polym Sci, Part B: Polym Phys 38:1323–1330

    Article  CAS  Google Scholar 

  • Nogi M, Handa K, Nakagaito AN, Yano H (2005) Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix. Appl Phys Lett 87:243110

    Article  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428

    Article  CAS  Google Scholar 

  • Pahimanolis N, Salminen A, Penttilä PA, Korhonen JT, Johansson L, Ruokolainen J, Serimaa R, Seppälä J (2013) Nanofibrillated cellulose/carboxymethyl cellulose composite with improved wet strength. Cellulose 20:1459–1468

    Google Scholar 

  • Paralikar SA, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320:248–258

    Article  CAS  Google Scholar 

  • Peresin MS, Habibi Y, Vesterinen A, Rojas OJ, Pawlak JJ, Seppälä JV (2010) Effect of moisture on electrospun nanofiber composites of poly(vinyl alcohol) and cellulose nanocrystals. Biomacromolecules 11:2471–2477

    Article  CAS  Google Scholar 

  • Pourjavadi A, Soleyman R, Barajee GR (2008) Novel nanoporous superabsorbent hydrogel based on poly(acrylic acid) grafted onto salep: synthesis and swelling behavior. Starch–Stärke 60:467–475

    Article  CAS  Google Scholar 

  • Priest WJ (1951) Swelling of polyvinyl alcohol in water. J Polym Sci 6:699–710

    Article  CAS  Google Scholar 

  • Şakar-Deliormanli A (2012) Flow behavior of hydroxypropyl methyl cellulose/polyacrylic acid interpolymer complexes in aqueous media. Polym Int 61:1751–1757

    Google Scholar 

  • Salmah H, Ismail H, Bakar AA (2008) The effects of dynamic vulcanization and compatibilizer on properties of paper sludge-filled polypropylene/ethylene propylene diene terpolymer composites. J Appl Polym Sci 107:2266–2273

    Article  CAS  Google Scholar 

  • Srithep Y, Turng L, Sabo R, Clemons C (2012) Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming. Cellulose 19:1209–1223

    Article  CAS  Google Scholar 

  • Swantomo D, Megasari K (2013) Synthesis of controlled release fertilizers based on smart biodegradable hydrogel cellulose-vinyl monomers using radiation. Indonesia Toray Science Foundation Seminar on Science and Technology Session, Vol. A, pp 1–9

  • Syverud K, Kirsebom H, Hajizadeh S, Chinga-Carrasco G (2011) Cross-linking cellulose nanofibrils for potential elastic cryo-structured gels. Nanoscale Res Lett 6:626

    Article  Google Scholar 

  • Trakulsujaritchok T, Hourston DJ (2006) Damping characteristics and mechanical properties of silica filled PUR/PEMA simultaneous interpenetrating polymer networks. Euro Polym J 42:2968–2976

    Article  CAS  Google Scholar 

  • Vasilescu AS, Ponta CC (1996) A 13C-NMR study of polyacrylic acid gels as radioactive ion sorbents. Prog Colloid Polym Sci 102:98–100

    Article  CAS  Google Scholar 

  • Zhou, Tashiro K, Hongo T, Shirataki H, Yamane C, Ii T (2001) Influence of water on structure and mechanical properties of regenerated cellulose studied by an organized combination of infrared spectra, X-ray diffraction, and dynamic viscoelastic data measured as functions of temperature and humidity. Macromolecules 34:1274–1280

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jukka Seppälä.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spoljaric, S., Salminen, A., Luong, N.D. et al. Crosslinked nanofibrillated cellulose: poly(acrylic acid) nanocomposite films; enhanced mechanical performance in aqueous environments. Cellulose 20, 2991–3005 (2013). https://doi.org/10.1007/s10570-013-0061-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0061-x

Keywords

Navigation