Skip to main content
Log in

Eco-friendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A previously unreported nanocomposite (CMC/GO) high-performance film was prepared by a simple solution mixing-evaporation method. The structure, thermal stability, and mechanical properties of the composite films were investigated by wide-angle X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, thermogravimetry analysis, and mechanical testing. The results obtained from these different studies revealed that CMC and graphene oxide were able to form a homogeneous mixture. Compared with pure CMC, the tensile strength and Young’s modulus of the graphene-based materials were improved significantly upon incorporation of 1 wt% graphene oxide by 67 ± 6 % and 148 ± 5 %, respectively. In addition, the DMA composite films also showed a high storage modulus up to 250 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Biswal DR, Singh RP (2004) Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr Polym 57:379–387

    Article  CAS  Google Scholar 

  • Chakraborty T, Chakraborty I, Ghosh S (2006) Sodium carboxymethylcellulose–CTAB interaction: a detailed thermodynamic study of polymer–surfactant interaction with opposite charges. Langmuir 22:9905–9913

    Article  CAS  Google Scholar 

  • Chen C, Yang QH, Yang Y, Lv W, Wen Y, Hou PX, Wang M, Cheng HM (2009) Self-assembled free-standing graphite oxide membrane. Adv Mater 21:3007–3011

    Article  CAS  Google Scholar 

  • Chen HH, Chen LC, Huang HC, Lin SB (2011) In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacter xylinus. Cellulose 18:1573–1583

    Article  CAS  Google Scholar 

  • Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon-nanotube-polymer composites. Carbon 44:1624–1652

    Article  CAS  Google Scholar 

  • Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460. doi:10.1038/nature06016

    Article  CAS  Google Scholar 

  • Doyle CD (1961) Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis. Anal Chem 33:77

    Article  CAS  Google Scholar 

  • Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch–cellulose microfibril composites. J Appl Polym Sci 76:2080–2092

    Article  CAS  Google Scholar 

  • Fang M, Wang KG, Lu HB, Yang YL, Nutt S (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19:7098–7105

    Article  CAS  Google Scholar 

  • Feng LZ, Zhang SA, Liu ZA (2011) Graphene based gene transfection. Nanoscale 3:1252–1257

    Article  CAS  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  CAS  Google Scholar 

  • Gontard N, Guilbert S, Cuq JL (1993) Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat film. J Food Sci 58:206–211

    Article  CAS  Google Scholar 

  • Gonzalez CR, Hernández ALM, Castaño VM, Kharissova OV, Ruoff RS, Santos CV (2012) Polysaccharide nanocomposites reinforced with graphene oxide and keratin-grafted graphene oxide. Ind Eng Chem Res 51:3619–3629

    Article  Google Scholar 

  • Hagenmaier RD, Shaw PE (1990) Moisture permeability of edible films made with fatty acids and hydroxypropyl methylcellulose. J Agri Food Chem 38:1799–1803

    Article  CAS  Google Scholar 

  • Haigler CH, Brown RM Jr, Benziman M (1980) Calcofluor white ST alters the in vivo assembly of cellulose microfibrils. Science 210:903–906. doi:10.1126/science.7434003

    Article  CAS  Google Scholar 

  • Han D, Yan L, Chen W, Li W (2011a) Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydr Polym 83:653–658

    Article  CAS  Google Scholar 

  • Han DL, Yan LF, Chen WF, Li W, Bangal PR (2011b) Cellulose/graphite oxide composite films with improved mechanical properties over a wide range of temperature. Carbohydr Polym 83:966–972

    Article  CAS  Google Scholar 

  • Hao R, Qian W, Zhang LH, Hou YL (2008) Aqueous dispersions of TCNQ anion- stabilized graphene sheets. Chem Comm 48:6576–6578

    Article  Google Scholar 

  • He Y, Zhang N, Gonga Q, Qiub H, Wang W, Liu Y, Gao J (2012) Alginate/graphene oxide fibers with enhanced mechanical strength prepared by wet spinning. Carbohydr Polym 88:1100–1108

    Article  CAS  Google Scholar 

  • Hirai A, Tsuji M, Yamamoto H, Horii F (1998) In situ crystallization of bacterial cellulose III. Influences of different polymeric additives on the formation of microfibrils as revealed by transmission electron microscopy. Cellulose 5:201–213

    Article  CAS  Google Scholar 

  • Hummers WS Jr, Offeman RE (1958) Preparation of graphite oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  • Li D, Kaner RB (2008) Graphene-based materials. Science 320:1170–1171

    Article  CAS  Google Scholar 

  • Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Article  CAS  Google Scholar 

  • Li R, Liu CH, Ma J (2011) Studies on the properties of graphene oxide-reinforced starch biocomposites. Carbohydr Polym 84:631–637

    Article  CAS  Google Scholar 

  • Liang JJ, Huang Y, Zhang L, Wang Y, Ma YF, Guo TY et al (2009) Molecularlevel dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297–2302

    Article  CAS  Google Scholar 

  • Loos MR, Yang J, Feke DL, Manas-Zloczower I, Unal S, Younes U (2013) Enhancement of fatigue life of polyurethane composites containing carbon nanotubes. Compos Part B: Eng 44:740–744

    Google Scholar 

  • Lourdin D, Della VG, Colonna P (1995) Influence of amylose content on starch films and foams. Carbohydr Polym 27:261–270

    Article  CAS  Google Scholar 

  • Maftoonazad N, Ramaswamy HS, Marcotte M (2008) Shelf- life extension of peaches through sodium alginate and methyl cellulose edible coating. Int J Food Sci Technol 43:951–957. doi:10.1111/j.1365-2621.2006.01444.x

    Article  CAS  Google Scholar 

  • Mao A, Zhang D, Jin X, Gu X, Wei X, Yang G, Liu X (2012) Synthesis of graphene oxide sheets decorated by silver nanoparticles in organic phase and their catalytic activity. J Phy Chem Solids 73:982–986

    Article  CAS  Google Scholar 

  • Nie H, Liu M, Zhan F, Guo M (2004) Factors on the preparation of carboxymethycellulose hydrogel and its degradation behavior in soil. Carbohydr Polym 58:185–189

    Article  CAS  Google Scholar 

  • Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24:10560–10564

    Article  CAS  Google Scholar 

  • Park HJ, Weller CL, Vergano PJ, Testin RF (1993) Permeability and mechanical properties of cellulose-based edible films. J Food Sci 58:1361–1364

    Article  CAS  Google Scholar 

  • Park S, An JH, Piner RD, Jung I, Yang DX, Velamakanni A et al (2008) Aqueous suspension and characterization of chemically modified graphene sheets. Chem Mater 20:6592–6594

    Article  CAS  Google Scholar 

  • Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331

    Article  CAS  Google Scholar 

  • Rana VK, Choi MC, Kong JY, Kim GY, Kim MJ, Kim SH, Mishra S, Singh RP, Ha CS (2011) Synthesis and drug-delivery behavior of chitosan-functionalized graphene oxide hybrid nanosheets. Macro Mater Eng 296:131–140

    Article  CAS  Google Scholar 

  • Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48:7752–7777

    Article  CAS  Google Scholar 

  • Rodil VS, Paredes JI, Martinez-Alonso A, Tascon JMD (2009) Preparation of graphene dispersions and graphene-polymer composites in organic media. J Mater Chem 19:3591–3593

    Article  Google Scholar 

  • Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA et al (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  CAS  Google Scholar 

  • Tong Q, Xiao Q, Lim LT (2008) Preparation and properties of pullulan–alginate–carboxymethylcellulose blend films. Food Res Int 41:1007–1014. doi:10.1016/j.foodres.2008.08.005

    Article  CAS  Google Scholar 

  • Vyazovkin S, Sbirrazzuoli N (2006) Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun 27:1515–1532

    Article  CAS  Google Scholar 

  • Wang S, Shen L, Zhang W, Tong Y (2005) Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 6:3067–3072

    Article  CAS  Google Scholar 

  • Yadav M, Sand A, Behari K (2012) Synthesis and properties of a water soluble graft (chitosan-g-2-acrylamidoglycolic acid) copolymer. Int J Biol Macromol 50:1306–1314

    Article  CAS  Google Scholar 

  • Yang L, Paulson AT (2000) Effect of lipids on mechanical and moisture barrier properties of edible gellan film. Food Res Int 33:571–578

    Article  CAS  Google Scholar 

  • Yang X, Tu Y, Li L, Shang S, Tao XM (2010) Well-dispersed chitosan/graphene oxide nanocomposites. Appl mater interf 2:1707–1713

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Kyung Hee University in 2012 “(KHU-20120597)”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Y. Rhee or I. H. Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yadav, M., Rhee, K.Y., Jung, I.H. et al. Eco-friendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film. Cellulose 20, 687–698 (2013). https://doi.org/10.1007/s10570-012-9855-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9855-5

Keywords

Navigation