Skip to main content
Log in

Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions

  • Review
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Despite being the world’s most abundant natural polymer and one of the most studied, cellulose is still challenging researchers. Cellulose is known to be insoluble in water and in many organic solvents, but can be dissolved in a number of solvents of intermediate properties, like N-methylmorpholine N-oxide and ionic liquids which, apparently, are not related. It can also be dissolved in water at extreme pHs, in particular if a cosolute of intermediate polarity is added. The insolubility in water is often referred to strong intermolecular hydrogen bonding between cellulose molecules. Revisiting some fundamental polymer physicochemical aspects (i.e. intermolecular interactions) a different picture is now revealed: cellulose is significantly amphiphilic and hydrophobic interactions are important to understand its solubility pattern. In this paper we try to provide a basis for developing novel solvents for cellulose based on a critical analysis of the intermolecular interactions involved and mechanisms of dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Astrand PO, Karlstrom G, Engdahl A, Nelander B (1995) Novel model for calculating the intermolecular part of the infrared-spectrum for molecular-complexes. J Chem Phys 102(9):3534–3554

    Article  CAS  Google Scholar 

  • Axelsson A, Borgquist P, Korner A, Piculell L, Larsson A (2006) A model for the drug release from a polymer matrix tablet—effects of swelling and dissolution. J Control Release 113(3):216–225

    Article  Google Scholar 

  • BeMiller JN, Whistler L (1996) In Food chemistry. CRC Press, p 157

  • Bergenstråhle M, Wohlert J, Himmel ME, Brady JW (2010) Simulation studies of the insolubility of cellulose. Carbohydr Res 345(14):2060–2066

    Article  Google Scholar 

  • Biermann O, Hädicke E, Koltzenburg S, Müller-Plathe F (2001) Hydrophilicity and lipophilicity of cellulose crystal surfaces. Angew Chem Int Ed 40:3822

    Article  CAS  Google Scholar 

  • Bodvik R, Dedinaite A, Karlson L, Bergstrom M, Baverback P, Pedersen JS, Edwards K, Karlsson G, Varga I, Claesson PM (2010) Aggregation and network formation of aqueous methylcellulose and hydroxypropylmethylcellulose solutions. Colloids Surf A Physicochem Eng Asp 354(1–3):162–171

    Article  CAS  Google Scholar 

  • Boerstoel H, Maatman H, Westerink JB, Koenders BM (2001) Liquid crystalline solutions of cellulose in phosphoric acid. Polymer 42(17):7371–7379

    Article  CAS  Google Scholar 

  • Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/Urea and NaOH/Urea aqueous solutions. Macromol Biosci 5(6):539–548

    Article  CAS  Google Scholar 

  • Cai J, Zhang LN, Zhou JP, Qi HS, Chen H, Kondo T, Chen XM, Chu B (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19(6):821–825

    Google Scholar 

  • Canuto S, Fileti EE, Chaudhuri P (2004) Relative strength of hydrogen bond interaction in alcohol-water complexes. Chem Phys Lett 400(4–6):494–499

    Google Scholar 

  • Cao NJ, Xu Q, Chen CS, Gong CS, Chen LF (1994) Cellulose hydrolysis using zinc-chloride as a solvent and catalyst. Appl Biochem Biotechnol 45–6:521–530

    Article  Google Scholar 

  • Chaplin M (2011) Water structure and science. http://www.lsbu.ac.uk/water/hycel.html

  • Del Valle EMM (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046

    Article  Google Scholar 

  • Holmberg K, Jonsson B, Kronberg B, Lindman B (2002) Surfactants and polymers in aqueous solution. Wiley, Hoboken

    Book  Google Scholar 

  • Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5(4):309–319

    Article  CAS  Google Scholar 

  • Kamide K, Okajima K, Kowsaka K (1992) Dissolution of natural cellulose into aqueous alkali solution—role of super-molecular structure of cellulose. Polym J 24(1):71–86

    Article  CAS  Google Scholar 

  • Kihlman M, Wallberg O, Stigsson L, Germgard U (2011) Dissolution of dissolving pulp in alkaline solvents after steam explosion pretreatments. Holzforschung 65(4):613–617

    Article  CAS  Google Scholar 

  • Körner A (2006) Dissolution of polydisperse polymers in water. Lund University, Lund

    Google Scholar 

  • Korner A, Larsson A, Piculell L, Wittgren B (2005a) Molecular information on the dissolution of polydisperse polymers: mixtures of long and short poly(ethylene oxide). J Phys Chem B 109(23):11530–11537

    Article  Google Scholar 

  • Korner A, Larsson A, Piculell L, Wittgren B (2005b) Tuning the polymer release from hydrophilic matrix tablets by mixing short and long matrix polymers. J Pharm Sci 94(4):759–769

    Article  Google Scholar 

  • Larsson A, Korner A, Piculell L, Iselau F, Wittgren B (2009) Influence of different polymer types on the overall release mechanism in hydrophilic matrix tablets. Molecules 14(8):2699–2716

    Article  Google Scholar 

  • Lindman B, Karlstrom G (2009) Nonionic polymers and surfactants: temperature anomalies revisited. Comptes Rendus Chimie 12(1–2):121–128

    Article  CAS  Google Scholar 

  • Lindman B, Karlstrom G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156(1):76–81

    Article  CAS  Google Scholar 

  • Northolt MG, Boerstoel H, Maatman H, Huisman R, Veurink J, Elzerman H (2001) The structure and properties of cellulose fibres spun from an anisotropic phosphoric acid solution. Polymer 42(19):8249–8264

    Article  CAS  Google Scholar 

  • Pinkert A, Marsh KN, Pang S (2010) Reflections on the solubility of cellulose. Ind Eng Chem Res 49:11121–11130

    Google Scholar 

  • Saric SP, Schofield RK (1946) The dissociation constants of the carboxyl and hydroxyl groups in some insoluble and sol-forming polysaccharides. Proc R Soc Lond A Math Phys Sci 185(1003):431–447

    Article  CAS  Google Scholar 

  • Schneider S, Linse P (2002) Swelling of cross-linked polyelectrolyte gels. Eur Phys J E 8(5):457–460

    CAS  Google Scholar 

  • Sobue H, Kiessig H, Hess K (1939) The cellulose-sodium hydroxide-water system subject to the temperature. Zeitschrift Fur Physikalische Chemie-Abteilung B-Chemie Der Elementarprozesse Aufbau Der Materie 43(5):309–328

    Google Scholar 

  • Yamane C, Aoyagi T, Ago M, Sato K, Okajima K, Takahashi T (2006) Two different surface properties of regenerated cellulose due to structural anisotropy. Polym J 38(8):819–826

    Article  CAS  Google Scholar 

  • Yamane C, Miyamoto H, Umemura M, Aoyagi T, Ueda K, Takahashi K (2009) Structural reorganization of molecular sheets derived from cellulose II by molecular dynamics simulations. Carbohydr Res 344(9):1085–1094

    Article  Google Scholar 

  • Yan LF, Gao ZJ (2008) Dissolving of cellulose in PEG/NaOH aqueous solution. Cellulose 15(6):789–796

    Article  CAS  Google Scholar 

  • Yan LF, Chen J, Bangal PR (2007) Dissolving cellulose in a NaOH/thiourea aqueous solution: a topochemical investigation. Macromol Biosci 7(9–10):1139–1148

    Article  CAS  Google Scholar 

  • Ying W (2008) Cellulose fiber dissolution in sodium hydroxide solution at low temperature: dissolution kinetics and solubility improvement. Georgia Institute of Technology, Atlanta

  • Zhang LN, Ruan D, Gao SJ (2002) Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci B Polym Phys 40(14):1521–1529

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Medronho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medronho, B., Romano, A., Miguel, M.G. et al. Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19, 581–587 (2012). https://doi.org/10.1007/s10570-011-9644-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9644-6

Keywords

Navigation