Skip to main content

Advertisement

Log in

Pyruvate kinase M2 in chronic inflammations: a potpourri of crucial protein–protein interactions

  • Review
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Chronic inflammation (CI) is a primary contributing factor involved in multiple diseases like cancer, stroke, diabetes, Alzheimer’s disease, allergy, asthma, autoimmune diseases, coeliac disease, glomerulonephritis, sepsis, hepatitis, inflammatory bowel disease, reperfusion injury, and transplant rejections. Despite several expansions in our understanding of inflammatory disorders and their mediators, it seems clear that numerous proteins participate in the onset of CI. One crucial protein pyruvate kinase M2 (PKM2) much studied in cancer is also found to be inextricably woven in the onset of several CI’s. It has been found that PKM2 plays a significant role in several disorders using a network of proteins that interact in multiple ways. For instance, PKM2 forms a close association with epidermal growth factor receptors (EGFRs) for uncontrolled growth and proliferation of tumor cells. In neurodegeneration, PKM2 interacts with apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) to onset Alzheimer’s disease pathogenesis. The cross-talk of protein tyrosine phosphatase 1B (PTP1B) and PKM2 acts as stepping stones for the commencement of diabetes. Perhaps PKM2 stores the potential to unlock the pathophysiology of several diseases. Here we provide an overview of the notoriously convoluted biology of CI’s and PKM2. The cross-talk of PKM2 with several proteins involved in stroke, Alzheimer’s, cancer, and other diseases has also been discussed. We believe that considering the importance of PKM2 in inflammation-related diseases, new options for treating various disorders with the development of more selective agents targeting PKM2 may appear.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

3PO:

3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one

AD:

Alzheimer’s disease

ADP:

adenosine diphosphate

Akt:

protein kinase B or PKB

AMPK:

adenosine monophosphate-activated protein kinase

Ang-1:

angiopoietin-1

APE1:

apurinic/apyrimidinic endodeoxyribonuclease 1

ApoE:

apolipoprotein E

ATP:

adenosine triphosphate

Bcl-2:

B cell lymphoma 2

Bcl-xl:

B cell lymphoma-extra large

Bcr-Abl:

breakpoint cluster region - Abelson gene (fusion of gene) sequence

Bmal:

brain and muscle ARNT-like protein

BRAF:

proto-oncogene B-Raf & v-Raf murine sarcoma viral oncogene homolog B, serine/threonine-protein kinase B-Raf

CAD:

coronary artery disease

CCI:

chronic constriction injury

CCL:

chemokine (c-c motif) ligand

CD:

Crohn’s disease

CDK4:

cyclin-dependant kinase 4

CI:

chronic inflammation

CNS:

central nervous system

COL2A1:

collagen type 2 alpha 1 chain

CRAF:

RAF proto-oncogene serine/threonine-protein kinase

CSC:

cancer stem cell

CUL3:

Cullin-3

CXCL:

chemokine (C-X-C motif) ligand

CXCR4:

C-X-C chemokine receptor type 4

Cys:

3-letter code for amino acid cysteine

DAPK:

death-associated protein kinase

DBD:

DNA-binding domain

DNA:

deoxyribonucleic acid

DRAK:

death-associated protein kinase related

DU145:

a human prostate cancer cell line

EGF:

epidermal growth factor

EGFR:

epidermal growth factor receptor

EIF2AK2:

eukaryotic translation initiation factor 2-alpha kinase 2

EMT:

epithelial-mesenchymal transitions

e-NOS:

endothelial Nitric oxide synthase

EPO:

erythropoietin

ERK:

extracellular signal-regulated kinases

EVs:

extracellular vesicles

FAK:

focal adhesion kinase

FDA or USFDA:

United States Food & Drug Administration

FH:

fumarate dehydrogenase

G12V:

glycine is mutated by Valine at the residue no. 12

GLUT:

glucose transporter

GM-CSF:

granulocyte-macrophage colony-stimulating factor

GSK:

glycogen synthase kinase

GTPase:

guanosine triphosphatase

HER2:

human epidermal growth factor receptor 2

HHcy:

hyperhomocysteinemia

HI:

hypoxia-Ischemia

HIF:

hypoxia including factor

HMGB1:

high mobility group box 1 protein

HRE:

hypoxia-responsive element

HSP:

heat shock proteins

I2H:

in silico 2-hybrid

IBD:

inflammatory bowel disease

ICAM-1:

intercellular adhesion molecule 1

IFN:

interferon

IGF:

insulin-like growth factor

IgG:

immunoglobulin G

IKKβ:

inhibitor of nuclear factor kappa-B kinase subunit beta

IL:

interleukin

iNOS:

inducible nitric oxide synthase

JMJD5:

jumonji C domain-containing deoxygenase 5 protein

JNK:

c-Jun N-terminal kinase

K433:

1-letter code for amino acid lysine including its residue no. 433

LDHA, LDA-A:

lactate dehydrogenase A

LKB1:

liver kinase B1

LPS:

lipopolysaccharide

MAK:

mitogen-activated protein kinases (MAP kinase/MAPK)

MCP:

monocyte chemoattractant protein

MCT:

monocarboxylate transporter

MDA-MB-231:

an epithelial human breast cancer cell line

MDSC:

myeloid-derived suppressor cells

MEK:

a type of serine/tyrosine/threonine kinase & one of the mitogen-activated kinases

MET:

tyrosine-protein kinase Met or hepatocyte growth factor receptor (HGFR)

MLC:

myosin light chain

mRNA:

messenger RNA

mtDNA:

mitochondrial DNA

mTOR:

mammalian target for Rapamycin or mechanistic target for Rapamycin

mTORC1:

mammalian target for Rapamycin complex 1 or mechanistic target for Rapamycin complex 1

nDNA:

nuclear DNA

NFκB:

nuclear factor kappa B

NOX4:

NADPH oxidase 4

OA:

osteoarthritis

Oct:

octamer-binding transcription factor

OSM:

oncostatin M

OXPHOS:

oxidative phosphorylation

P2X receptors:

purinergic receptors X

P2Y receptors:

purinergic receptors Y

p300:

epigenetic cofactor

P-38:

a class of mitogen-activated protein kinases

PAMP:

pathogen-associated molecular pattern

PDAC:

pancreatic ductal adenocarcinoma

PDK:

pyruvate dehydrogenase kinase

PEP:

phosphoenolpyruvate

PFKFB3:

6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3

PGHS:

prostaglandin endoperoxide H synthase

PHD:

prolyl hydroxylase

PI3K:

phosphoinositide 3-kinase or phosphatidylinositol 3-kinase

PK:

pyruvate kinase

PKC:

protein kinase C

PKL:

pyruvate kinase L isoform

PKLR:

pyruvate kinase LR gene

PKM:

pyruvate kinase M gene

PKM1:

pyruvate kinase M1 isoform

PKM2:

pyruvate kinase M2 isoform

PKR:

pyruvate kinase R isoform

PPI:

protein–protein interaction

PPP:

pentose phosphate pathway

PROTAC:

proteolysis targeting chimera

PRR:

pattern recognition receptors

PsA:

psoriatic arthritis

PTB:

polypyrimidine tract-binding protein

PTP1B:

protein–tyrosine phosphatase 1B

RA:

rheumatoid arthritis

Ral (RalA and RalB):

Ras-related protein RalA and RalB

RASFC:

rheumatoid arthritis-synovial fibroblast cells

Ras-Raf-MEK-ERK pathway:

also known as MAPK/ERK pathway

RET/PTC1:

rearranged during transfection/papillary thyroid carcinoma 1

RNA:

ribonucleic acid

ROCK2:

Rho-associated protein kinase

ROS:

reactive oxygen species

S15:

1-letter code for amino acid Serine including its residue no. 15

SDF:

stromal cell–derived factor

SDH:

succinate dehydrogenase

Ser:

3-letter code for amino acid Serine

SOX-9:

a transcription factor

STAT:

signal transducer and activator of transcription proteins

SUMOlyation:

small ubiquitin-like modification

T45:

1-letter code for amino acid Threonine including its residue no. 45

TAD:

transcriptional activation domain

TAP-MS:

tandem affinity purification-mass spectroscopy

TBK1:

TANK-binding kinase 1

TCA:

tricarboxylic acid

TGFIF2:

TGF-β induced factor homeobox-2

TGF-β :

transforming growth factor β

Tie-2:

angiopoietin-1 receptor

TLR:

Toll-like receptors

TNF:

tumour necrosis factor

Tyr:

3-letter code of amino acid tyrosine

U251:

a human brain cell line

UC:

ulcerative colitis

VCAM-1:

vascular cell adhesion protein 1

VEGF:

vascular endothelial growth factor

Y105F:

tyrosine is mutated with phenylalanine at the residue no. 105

Y118:

1-letter code for amino acid tyrosine including its residue no. 118

Y2H:

yeast 2-hybrid

Y333:

1-letter code of amino acid tyrosine including its residue no. 333

αSyn:

α-synuclein

References

  • Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging. Elsevier. 2000;21(3):383–421.

    Article  CAS  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular biology of the cell 4th ed. New York: Garland Science; 2002.

    Google Scholar 

  • Almousa AA, Morris M, Fowler S, Jones J, Alcorn J. Elevation of serum pyruvate kinase M2 (PKM2) in IBD and its relationship to IBD indices. Clin Biochem. Elsevier. 2018;53:19–24.

    Article  CAS  Google Scholar 

  • Alquraishi M, Puckett DL, Alani DS, Humidat AS, Frankel VD, Donohoe DR, et al. Pyruvate kinase M2: a simple molecule with complex functions. Free Radic Biol Med. Elsevier. 2019;143:176–92.

    Article  CAS  Google Scholar 

  • Altenberg B, Greulich KO. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics Elsevier. 2004;84(6):1014–20.

    Article  CAS  Google Scholar 

  • Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang J, Shen M, et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science (80-. ). [Internet]. American Association for the Advancement of Science. 2011;334(6060):1278–83 Available from: https://www.ncbi.nlm.nih.gov/books/NBK153222/.

    Article  CAS  Google Scholar 

  • Ando M, Uehara I, Kogure K, Asano Y, Nakajima W, Abe Y, et al. Interleukin 6 enhances glycolysis through expression of the glycolytic enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase-3. J. Nippon Med. Sch. The Medical Association of Nippon Medical School. 2010;77(2):97–105.

    Article  CAS  Google Scholar 

  • Angiari S, Runtsch MC, Sutton CE, Palsson-McDermott EM, Kelly B, Rana N, et al. Pharmacological activation of pyruvate kinase M2 inhibits CD4+ T cell pathogenicity and suppresses autoimmunity. Cell Metab. Elsevier. 2020;31(2):391–405.

    Article  CAS  Google Scholar 

  • Ashok BS, Ajith TA, Sivanesan S. Hypoxia-inducible factors as neuroprotective agent in Alzheimer’s disease. Clin. Exp. Pharmacol. Physiol. Wiley Online Library. 2017;44(3):327–34.

    Article  CAS  Google Scholar 

  • Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. Elsevier. 2001;357(9255):539–45.

    Article  CAS  Google Scholar 

  • Barnett JA. A history of research on yeasts 5: the fermentation pathway. Yeast. John Wiley & Sons, Ltd. Chichester, UK. 2003;20(6):509–43.

    CAS  Google Scholar 

  • Basakran NS. CD44 as a potential diagnostic tumor marker. Saudi Med J Saudi Medical Journal. 2015;36(3):273–9.

    Article  PubMed  Google Scholar 

  • Baselga J, Albanell J. Epithelial growth factor receptor interacting agents. Hematol Oncol Clin North Am. 2002;16(5):1041–63.

    Article  PubMed  Google Scholar 

  • Bettaieb A, Bakke J, Nagata N, Matsuo K, Xi Y, Liu S, et al. Protein tyrosine phosphatase 1B regulates pyruvate kinase M2 tyrosine phosphorylation. J Biol Chem. ASBMB. 2013;288(24):17360–71.

    Article  CAS  Google Scholar 

  • Birsoy K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M, Sabatini DM. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell. Elsevier. 2015;162(3):540–51.

    Article  CAS  Google Scholar 

  • Blaikie L, Kay G, Lin PKT. Current and emerging therapeutic targets of Alzheimer’s disease for the design of multi-target directed ligands. Medchemcomm Royal Society of Chemistry. 2019;10(12):2052–72.

    CAS  Google Scholar 

  • Borst K, Schwabenland M, Prinz M. Microglia metabolism in health and disease. Neurochem Int. Elsevier. 2019;130:104331.

    Article  CAS  Google Scholar 

  • Boudewijn MT, Coffer PJ. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature Nature Publishing Group. 1995;376(6541):599–602.

    Google Scholar 

  • Brown JB, Cheresh P, Goretsky T, Managlia E, Grimm GR, Ryu H, et al. Epithelial PI3K signaling is required for β-catenin activation and host defense against Citrobacter rodentium infection. Infect Immun Am Soc Microbiol. 2011.

  • Busl KM, Greer DM. Hypoxic-ischemic brain injury: pathophysiology, neuropathology and mechanisms. NeuroRehabilitation. IOS Press. 2010;26(1):5–13.

    Article  Google Scholar 

  • Butterfield DA, Abdul HM, Opii W, Newman SF, Joshi G, Ansari MA, et al. Pin1 in Alzheimer’s disease. J Neurochem. Wiley Online Library. 2006;98(6):1697–706.

    CAS  Google Scholar 

  • Canal F, Perret C. PKM2: a new player in the β-catenin game. Futur Oncol Future Medicine. 2012;8(4):395–8.

    Article  CAS  Google Scholar 

  • Cartier N, Lewis C-A, Zhang R, Rossi FMV. The role of microglia in human disease: therapeutic tool or target? Acta Neuropathol Springer. 2014;128(3):363–80.

    Article  CAS  Google Scholar 

  • Chakrabarti R. Transcriptional regulation of the rat glutamine synthetase gene by tumor necrosis factor-α. Eur J Biochem Wiley Online Library. 1998;254(1):70–4.

    Article  CAS  Google Scholar 

  • Chatterjee S, Burns TF. Targeting heat shock proteins in cancer: a promising therapeutic approach. Int. J. Mol. Sci. Multidisciplinary Digital Publishing Institute. 2017;18(9):1978.

    Google Scholar 

  • Chen Z, Zhong C. Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol. Elsevier. 2013;108:21–43.

    Article  CAS  Google Scholar 

  • Chen Z, Lu W, Garcia-Prieto C, Huang P. The Warburg effect and its cancer therapeutic implications. J Bioenerg Biomembr Springer. 2007;39(3):267–74.

    Article  CAS  Google Scholar 

  • Chen L, Tang Z, Wang X, Ma H, Shan D, Cui S. PKM2 aggravates palmitate-induced insulin resistance in HepG2 cells via STAT3 pathway. Biochem Biophys Res Commun. Elsevier. 2017;492(1):109–15.

    Article  CAS  Google Scholar 

  • Chen D, Wei L, Liu Z-R, Yang JJ, Gu X, Wei ZZ, et al. Pyruvate kinase M2 increases angiogenesis, neurogenesis, and functional recovery mediated by upregulation of STAT3 and focal adhesion kinase activities after ischemic stroke in adult mice. Neurotherapeutics. Springer. 2018a;15(3):770–84.

    Article  CAS  Google Scholar 

  • Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. Impact Journals, LLC. 2018b;9(6):7204.

    Google Scholar 

  • Cortés-Cros M, Hemmerlin C, Ferretti S, Zhang J, Gounarides JS, Yin H, et al. M2 isoform of pyruvate kinase is dispensable for tumor maintenance and growth. Proc. Natl. Acad. Sci. National Acad Sciences. 2013;110(2):489–94.

    Article  Google Scholar 

  • Costantini LC, Barr LJ, Vogel JL, Henderson ST. Hypometabolism as a therapeutic target in Alzheimer’s disease. BMC Neurosci. Springer. 2008;9(S2):S16.

    Article  CAS  Google Scholar 

  • Dang CV. PKM2 tyrosine phosphorylation and glutamine metabolism signal a different view of the Warburg effect. Sci. Signal. American Association for the Advancement of Science. 2009;2(97):pe75–pe75.

    Google Scholar 

  • Dayton TL, Gocheva V, Miller KM, Israelsen WJ, Bhutkar A, Clish CB, et al. Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma. Genes Dev Cold Spring Harbor Lab. 2016;30(9):1020–33.

    CAS  Google Scholar 

  • De Las Rivas J, Fontanillo C. Protein–protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol. Public Library of Science. 2010;6(6):e1000807.

    Article  CAS  Google Scholar 

  • Deb P, Sharma S, Hassan KM. Pathophysiologic mechanisms of acute ischemic stroke: an overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology. Elsevier. 2010;17(3):197–218.

    Article  CAS  Google Scholar 

  • Demetrius LA, Magistretti PJ, Pellerin L. Alzheimer’s disease: the amyloid hypothesis and the Inverse Warburg effect. Front. Physiol. Frontiers. 2015;5:522.

    Google Scholar 

  • Deng J, Lü S, Liu H, Liu B, Jiang C, Xu Q, et al. Homocysteine activates B cells via regulating PKM2-dependent metabolic reprogramming. J Immunol Am Assoc Immnol. 2017;198(1):170–83.

    CAS  Google Scholar 

  • Deng W, Zhu S, Zeng L, Liu J, Kang R, Yang M, et al. The circadian clock controls immune checkpoint pathway in sepsis. Cell Rep. Elsevier. 2018;24(2):366–78.

    Article  CAS  Google Scholar 

  • Dombrauckas JD, Santarsiero BD, Mesecar AD. Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry. ACS Publications. 2005;44(27):9417–29.

    CAS  Google Scholar 

  • Dorababu A. Critical evaluation of current Alzheimer’s drug discovery (2018–19) & futuristic Alzheimer drug model approach. Bioorg Chem. Elsevier. 2019;93:103299.

    Article  CAS  Google Scholar 

  • Erol A. Death-associated proliferation kinetic in normal and transformed cells. Cell cycle Taylor & Francis. 2012;11(8):1512–6.

    Article  CAS  Google Scholar 

  • Everts B, Amiel E, Huang SC-C, Smith AM, Chang C-H, Lam WY, et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nat Immunol. Nature Publishing Group. 2014;15(4):323–32.

    Article  CAS  Google Scholar 

  • Fakhoury M, Negrulj R, Mooranian A, Al-Salami H. Inflammatory bowel disease: clinical aspects and treatments. J Inflamm Res. Dove Press. 2014;7:113.

    Article  Google Scholar 

  • Fan X, Pei S, Zhou D, Zhou P, Huang Y, Hu X, et al. Melittin ameliorates inflammation in mouse acute liver failure via inhibition of PKM2-mediated Warburg effect. Acta Pharmacol Sin. Nature Publishing Group. 2020:1–11.

  • Fantin VR, Berardi MJ, Scorrano L, Korsmeyer SJ, Leder P. A novel mitochondriotoxic small molecule that selectively inhibits tumor cell growth. Cancer Cell. Elsevier. 2002;2(1):29–42.

    Article  CAS  Google Scholar 

  • Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. Elsevier. 2006;9(6):425–34.

    Article  CAS  Google Scholar 

  • Farag AK, Roh EJ. Death-associated protein kinase (DAPK) family modulators: current and future therapeutic outcomes. Med Res Rev. Wiley Online Library. 2019;39(1):349–85.

    CAS  Google Scholar 

  • Feagins LA, Souza RF, Spechler SJ. Carcinogenesis in IBD: potential targets for the prevention of colorectal cancer. Nat. Rev. Gastroenterol. Hepatol. Nature Publishing Group. 2009;6(5):297–305.

    Article  CAS  Google Scholar 

  • Feng J, Wu L, Ji J, Chen K, Yu Q, Zhang J, et al. PKM2 is the target of proanthocyanidin B2 during the inhibition of hepatocellular carcinoma. J Exp Clin Cancer Res BioMed Central. 2019;38(1):1–15.

    Google Scholar 

  • Flier JS, Mueckler MM, Usher P, Lodish HF. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science (80-. ). American Association for the Advancement of Science. 1987;235(4795):1492–5.

    Article  CAS  Google Scholar 

  • Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. Nature Publishing Group. 2004;4(11):891–9.

    Article  CAS  Google Scholar 

  • Geovanini GR, Libby P. Atherosclerosis and inflammation: overview and updates. Clin. Sci. Portland Press Ltd. 2018;132(12):1243–52.

    CAS  Google Scholar 

  • Gomes MA, Priolli DG, Tralhao JG, Botelho MF. Hepatocellular carcinoma: epidemiology, biology, diagnosis, and therapies. Rev. da Assoc. Médica Bras. (English Ed. Elsevier). 2013;59(5):514–24.

    Article  Google Scholar 

  • Gui DY, Lewis CA, Vander Heiden MG. Allosteric regulation of PKM2 allows cellular adaptation to different physiological states. Sci. Signal. American Association for the Advancement of Science. 2013;6(263):pe7–pe7.

    Google Scholar 

  • Hall CN, Klein-Flügge MC, Howarth C, Attwell D. Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. J Neurosci Soc Neuroscience. 2012;32(26):8940–51.

    Article  CAS  Google Scholar 

  • Hamabe A, Konno M, Tanuma N, Shima H, Tsunekuni K, Kawamoto K, et al. Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial–mesenchymal transition. Proc. Natl. Acad. Sci. National Acad Sciences. 2014;111(43):15526–31.

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. Elsevier. 2000;100(1):57–70.

    Article  CAS  Google Scholar 

  • Hanlon MM, Rakovich T, Cunningham CC, Ansboro S, Veale DJ, Fearon U, et al. STAT3 Mediates the differential effects of oncostatin M and TNFα on RA synovial fibroblast and endothelial cell function. Front Immunol. Frontiers. 2019;10:2056.

    Article  CAS  Google Scholar 

  • Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. J Cell Biol. The Rockefeller University Press. 2018;217(2):459–72.

    Article  CAS  Google Scholar 

  • Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer Nature Publishing Group. 2002;2(1):38–47.

    Article  CAS  Google Scholar 

  • Hartmann S, Ridley AJ, Lutz S. The function of Rho-associated kinases ROCK1 and ROCK2 in the pathogenesis of cardiovascular disease. Front Pharmacol. Frontiers. 2015;6:276.

    Google Scholar 

  • Hewick RM, Lu Z, Wang JH. Proteomics in drug discovery. Adv Protein Chem. Elsevier. 2003:309–42.

  • Hooper C, Killick R, Lovestone S. The GSK3 hypothesis of Alzheimer’s disease. J Neurochem Wiley Online Library. 2008;104(6):1433–9.

    CAS  Google Scholar 

  • Hotchkiss RS, Moldawer LL, Opal SM, Reinhart K, Turnbull IR. Vincent J-L. Sepsis and septic shock. Nat Rev Dis Prim. Nature Publishing Group. 2016;2(1):1–21.

    Google Scholar 

  • Hou P, Luo L, Chen H, Chen Q, Bian X, Wu S, et al. Ectosomal PKM2 promotes HCC by inducing macrophage differentiation and remodeling the tumor microenvironment. Mol Cell. Elsevier. 2020;78(6):1192–206.

    Article  CAS  Google Scholar 

  • Huang L, Yu Z, Zhang T, Zhao X, Huang G. HSP40 interacts with pyruvate kinase M2 and regulates glycolysis and cell proliferation in tumor cells. PLoS One. Public Library of Science. 2014;9(3):e92949.

    Article  CAS  Google Scholar 

  • Huang J, Liu K, Zhu S, Xie M, Kang R, Cao L, et al. AMPK regulates immunometabolism in sepsis. Brain Behav Immun. Elsevier. 2018;72:89–100.

    Article  CAS  Google Scholar 

  • Iansante V, Choy PM, Fung SW, Liu Y, Chai J-G, Dyson J, et al. PARP14 promotes the Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation. Nat Commun. Nature Publishing Group. 2015;6(1):1–15.

    Google Scholar 

  • Inbal B, Shani G, Cohen O, Kissil JL, Kimchi A. Death-associated protein kinase-related protein 1, a novel serine/threonine kinase involved in apoptosis. Mol Cell Biol Am Soc Microbiol. 2000;20(3):1044–54.

    Article  CAS  Google Scholar 

  • Israelsen WJ, Dayton TL, Davidson SM, Fiske BP, Hosios AM, Bellinger G, et al. PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell. Elsevier. 2013;155(2):397–409.

    Article  CAS  Google Scholar 

  • Jain T, Nikolopoulou EA, Xu Q, Qu A. Hypoxia inducible factor as a therapeutic target for atherosclerosis. Pharmacol Ther. Elsevier. 2018;183:22–33.

    Article  CAS  Google Scholar 

  • Jiang Y, Li X, Yang W, Hawke DH, Zheng Y, Xia Y, et al. PKM2 regulates chromosome segregation and mitosis progression of tumor cells. Mol Cell. Elsevier. 2014a;53(1):75–87.

    Article  CAS  Google Scholar 

  • Jiang Y, Wang Y, Wang T, Hawke DH, Zheng Y, Li X, et al. PKM2 phosphorylates MLC2 and regulates cytokinesis of tumour cells. Nat Commun. Nature Publishing Group. 2014b;5(1):1–14.

    Google Scholar 

  • Jin K, Li T, Sánchez-Duffhues G, Zhou F, Zhang L. Involvement of inflammation and its related microRNAs in hepatocellular carcinoma. Oncotarget. Impact Journals, LLC. 2017;8(13):22145.

    Google Scholar 

  • Jones S, Thornton JM. Principles of protein-protein interactions. Proc Natl Acad Sci. National Acad Sciences. 1996;93(1):13–20.

    Article  CAS  Google Scholar 

  • Jose C, Bellance N, Rossignol R. Choosing between glycolysis and oxidative phosphorylation: a tumor’s dilemma? Biochim. Biophys. Acta (BBA)-Bioenergetics. Elsevier. 2011;1807(6):552–61.

    Article  CAS  Google Scholar 

  • Katsumoto A, Takeuchi H, Takahashi K, Tanaka F. Microglia in Alzheimer’s disease: risk factors and inflammation. Front Neurol. Frontiers. 2018;9:978.

    Article  Google Scholar 

  • Kawai T, Nomura F, Hoshino K, Copeland NG, Gilbert DJ, Jenkins NA, et al. Death-associated protein kinase 2 is a new calcium/calmodulin-dependent protein kinase that signals apoptosis through its catalytic activity. Oncogene. Nature Publishing Group. 1999;18(23):3471–80.

    CAS  Google Scholar 

  • Keller KE, Tan IS, Lee Y-S. SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions. Science (80-. ). American Association for the Advancement of Science. 2012;338(6110):1069–72.

    Article  CAS  Google Scholar 

  • Keller KE, Doctor ZM, Dwyer ZW, Lee Y-S. SAICAR induces protein kinase activity of PKM2 that is necessary for sustained proliferative signaling of cancer cells. Mol Cell. Elsevier. 2014;53(5):700–9.

    Article  CAS  Google Scholar 

  • Kim AS, Johnston SC. Temporal and geographic trends in the global stroke epidemic. Stroke Am Heart Assoc. 2013;44(6_suppl_1):S123–S5.

    Google Scholar 

  • Knowles JR. Enzyme-catalyzed phosphoryl transfer reactions. Annu Rev Biochem. Annual Reviews 4139 El Camino Way, PO Box 10139, Palo Alto, CA 94303-0139, USA. 1980;49(1):877–919.

    CAS  Google Scholar 

  • KoÈgel D, PloÈttner O, Landsberg G, Christian S, Scheidtmann KH. Cloning and characterization of Dlk, a novel serine/threonine kinase that is tightly associated with chromatin and phosphorylates core histones. Oncogene. 1998;17(20).

  • Kohno M, Pouyssegur J. Targeting the ERK signaling pathway in cancer therapy. Ann Med. Taylor & Francis. 2006;38(3):200–11.

    CAS  Google Scholar 

  • Kong Q, Li N, Cheng H, Zhang X, Cao X, Qi T, et al. HSPA12A is a novel player in nonalcoholic steatohepatitis via promoting nuclear PKM2-mediated M1 macrophage polarization. Diabetes Am Diabetes Assoc. 2019;68(2):361–76.

    CAS  Google Scholar 

  • Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. Nature Publishing Group. 2011;11(5):325–37.

    Article  CAS  Google Scholar 

  • Kucia M, Ratajczak J, Reca R, Janowska-Wieczorek A, Ratajczak MZ. Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury. Blood Cells, Mol Dis. Elsevier. 2004;32(1):52–7.

    Article  CAS  Google Scholar 

  • Kunze R, Zhou W, Veltkamp R, Wielockx B, Breier G, Marti HH. Neuron-specific prolyl-4-hydroxylase domain 2 knockout reduces brain injury after transient cerebral ischemia. Stroke Am Heart Assoc. 2012;43(10):2748–56.

    CAS  Google Scholar 

  • Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S, et al. Autocrine VEGF signaling is required for vascular homeostasis. Cell Elsevier. 2007;130(4):691–703.

    Article  CAS  Google Scholar 

  • Lee J, Kim HK, Han Y-M, Kim J. Pyruvate kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4 in regulating transcription. Int J Biochem Cell Biol Elsevier. 2008;40(5):1043–54.

    Article  CAS  Google Scholar 

  • Lee H, Jeong AJ, Ye S-K. Highlighted STAT3 as a potential drug target for cancer therapy. BMB Rep. Korean Society for Biochemistry and Molecular Biology. 2019;52(7):415.

    CAS  Google Scholar 

  • Lesley J, Hyman R, English N, Catterall JB, Turner GA. CD44 in inflammation and metastasis. Glycoconj J Springer. 1997;14(5):611–22.

    Article  CAS  Google Scholar 

  • Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades. Adv Cancer Res. Elsevier. 1998:49–139.

  • Li X-J, Xu M, Zhao X-Q, Zhao J-N, Chen F-F, Yu W, et al. Proteomic analysis of synovial fibroblast-like synoviocytes from rheumatoid arthritis. Clin Exp Rheumatol. 2013;31(4):552–8.

    PubMed  Google Scholar 

  • Li L, Zhu L, Hao B, Gao W, Wang Q, Li K, et al. iNOS-derived nitric oxide promotes glycolysis by inducing pyruvate kinase M2 nuclear translocation in ovarian cancer. Oncotarget. Impact Journals, LLC. 2017;8(20):33047.

    Google Scholar 

  • Li L, Tang L, Yang X, Chen R, Zhang Z, Leng Y, et al. Gene regulatory effect of pyruvate kinase M2 is involved in renal inflammation in type 2 diabetic nephropathy. Exp. Clin. Endocrinol. Diabetes. © Georg Thieme Verlag KG. 2020.

  • Liang J, Cao R, Wang X, Zhang Y, Wang P, Gao H, et al. Mitochondrial PKM2 regulates oxidative stress-induced apoptosis by stabilizing Bcl2. Cell Res. Nature Publishing Group. 2017;27(3):329–51.

    CAS  Google Scholar 

  • Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci. Elsevier. 2016;41(3):211–8.

    Article  CAS  Google Scholar 

  • Liu W-R, Tian M-X, Yang L-X, Lin Y-L, Jin L, Ding Z-B, et al. PKM2 promotes metastasis by recruiting myeloid-derived suppressor cells and indicates poor prognosis for hepatocellular carcinoma. Oncotarget. Impact Journals, LLC. 2015;6(2):846.

    Google Scholar 

  • Liu M, Wang Y, Ruan Y, Bai C, Qiu L, Cui Y, et al. PKM2 promotes reductive glutamine metabolism. Cancer Biol Med. Chinese Anti-Cancer Association. 2018;15(4):389.

    CAS  Google Scholar 

  • Liu T, Li S, Wu L, Yu Q, Li J, Feng J, et al. Experimental study of hepatocellular carcinoma treatment by shikonin through regulating PKM2. J Hepatocell Carcinoma. Dove Press. 2020;7:19.

    Article  CAS  Google Scholar 

  • Lochmatter C, Fischer R, Charles PD, Yu Z, Powrie F, Kessler BM. Integrative phosphoproteomics links IL-23R signaling with metabolic adaptation in lymphocytes. Sci Rep. Nature Publishing Group. 2016;6(1):1–12.

    Google Scholar 

  • Lü S, Deng J, Liu H, Liu B, Yang J, Miao Y, et al. PKM2-dependent metabolic reprogramming in CD4+ T cells is crucial for hyperhomocysteinemia-accelerated atherosclerosis. J Mol Med. Springer. 2018;96(6):585–600.

    Article  CAS  Google Scholar 

  • Lunt SY, Muralidhar V, Hosios AM, Israelsen WJ, Gui DY, Newhouse L, et al. Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol Cell. Elsevier. 2015;57(1):95–107.

    Article  CAS  Google Scholar 

  • Luo W, Semenza GL. Pyruvate kinase M2 regulates glucose metabolism by functioning as a coactivator for hypoxia-inducible factor 1 in cancer cells. Oncotarget. Impact Journals, LLC. 2011;2(7):551.

    Google Scholar 

  • Luo W, Hu H, Chang R, Zhong J, Knabel M, O’Meally R, et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. Elsevier. 2011;145(5):732–44.

    Article  CAS  Google Scholar 

  • Makinoshima H, Takita M, Saruwatari K, Umemura S, Obata Y, Ishii G, et al. Signaling through the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) axis is responsible for aerobic glycolysis mediated by glucose transporter in epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma. J Biol Chem. ASBMB. 2015;290(28):17495–504.

    Article  CAS  Google Scholar 

  • Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye SQ, et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood. American Society of Hematology. 2005;105(2):659–69.

    CAS  Google Scholar 

  • Martin GS. Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Expert Rev Anti Infect Ther. Taylor & Francis. 2012;10(6):701–6.

    Article  CAS  Google Scholar 

  • McGarry T, Biniecka M, Gao W, Cluxton D, Canavan M, Wade S, et al. Resolution of TLR2-induced inflammation through manipulation of metabolic pathways in rheumatoid arthritis. Sci Rep Nat. Publ Group. 2017;7:43165.

    CAS  Google Scholar 

  • McGlynn KA, London WT. The global epidemiology of hepatocellular carcinoma: present and future. Clin Liver Dis. Elsevier. 2011;15(2):223–43.

    Article  Google Scholar 

  • Meng X, Carlson NR, Dong J, Zhang Y. Oncogenic c-Myc-induced lymphomagenesis is inhibited non-redundantly by the p19Arf–Mdm2–p53 and RP–Mdm2–p53 pathways. Oncogene. Nature Publishing Group. 2015;34(46):5709–17.

    CAS  Google Scholar 

  • Meng Y, Li H, Liu C, Zheng L, Shen B. Jumonji domain-containing protein family: the functions beyond lysine demethylation. J Mol Cell Biol. Oxford University Press. 2018;10(4):371–3.

    Article  CAS  Google Scholar 

  • Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell. Elsevier. 2016;167(2):457–70.

    Article  CAS  Google Scholar 

  • Miranda-Gonçalves V, Reis RM, Baltazar F. Lactate transporters and pH regulation: potential therapeutic targets in glioblastomas. Curr. Cancer Drug Targets. Bentham Science Publishers. 2016;16(5):388–99.

    Article  CAS  Google Scholar 

  • Mishra A, Jaiswal A, Stahr N, Makhija S, Sandey M, Suryawanshi A. Pyruvate kinase M2 (PKM2)-mediated glycolytic upregulation in lung CD11c+ cells facilitates alternaria-induced acute airway inflammation. A31. ASTHMA Transl. Stud. American Thoracic Society. 2020:A1286–6.

  • Mittal S, El-Serag HB. Epidemiology of HCC: consider the population. J Clin Gastroenterol. NIH Public Access. 2013;47:S2.

    Article  Google Scholar 

  • Mor I, Carlessi R, Ast T, Feinstein E, Kimchi A. Death-associated protein kinase increases glycolytic rate through binding and activation of pyruvate kinase. Oncogene. Nature Publishing Group. 2012;31(6):683–93.

    CAS  Google Scholar 

  • Morita M, Sato T, Nomura M, Sakamoto Y, Inoue Y, Tanaka R, et al. PKM1 confers metabolic advantages and promotes cell-autonomous tumor cell growth. Cancer Cell. Elsevier. 2018;33(3):355–67.

    Article  CAS  Google Scholar 

  • Nemoto S, Takeda K, Yu Z-X, Ferrans VJ, Finkel T. Role for mitochondrial oxidants as regulators of cellular metabolism. Mol Cell Biol Am Soc Microbiol. 2000;20(19):7311–8.

    Article  CAS  Google Scholar 

  • Nitulescu GM, Van De Venter M, Nitulescu G, Ungurianu A, Juzenas P, Peng Q, et al. The Akt pathway in oncology therapy and beyond. Int J Oncol. Spandidos Publications. 2018;53(6):2319–31.

    CAS  Google Scholar 

  • Noguchi T, Inoue H, Tanaka T. The M1-and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol Chem. ASBMB. 1986;261(29):13807–12.

    Article  CAS  Google Scholar 

  • Ovbiagele B, Nguyen-Huynh MN. Stroke epidemiology: advancing our understanding of disease mechanism and therapy. Neurotherapeutics. Springer. 2011;8(3):319–29.

    Article  Google Scholar 

  • Pages G, Lenormand P, L’Allemain G, Chambard J-C, Meloche S, Pouyssegur J. Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci. National Acad Sciences. 1993;90(18):8319–23.

    Article  CAS  Google Scholar 

  • Palsson-McDermott EM, O’neill LA. The Warburg effect then and now: from cancer to inflammatory diseases. Bioessays. Wiley Online Library. 2013;35(11):965–73.

    CAS  Google Scholar 

  • Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MAR, Sheedy FJ, Gleeson LE, et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab. Elsevier. 2015;21(1):65–80.

    Article  CAS  Google Scholar 

  • Papa S, Choy PM, Bubici C. The ERK and JNK pathways in the regulation of metabolic reprogramming. Oncogene. Nature Publishing Group. 2019;38(13):2223–40.

    CAS  Google Scholar 

  • Park YS, Kim DJ, Koo H, Jang SH, You Y-M, Cho JH, et al. AKT-induced PKM2 phosphorylation signals for IGF-1-stimulated cancer cell growth. Oncotarget. Impact Journals, LLC. 2016;7(30):48155.

    Google Scholar 

  • Pedersen PL. Tumor mitochondria and the bioenergetics of cancer cells. Membr. anomalies tumor cells. Karger Publishers. 1978:190–274.

  • Peng Y, Xing S, Tang H, Wang C, Yi F, Liu G, et al. Influence of glucose transporter 1 activity inhibition on neuroblastoma in vitro. Gene. Elsevier. 2019;689:11–7.

    Article  CAS  Google Scholar 

  • Perwez Hussain S, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer. Wiley Online Library. 2007;121(11):2373–80.

    Google Scholar 

  • Pimenta RJ, Massabki PS. Hepatocellular carcinoma: a clinical outlook. Rev Bras Clin Med. 2010;8:59–67.

    Google Scholar 

  • Qiao H, He X, Zhang Q, Yuan H, Wang D, Li L, et al. Alpha-synuclein induces microglial migration via PKM2-dependent glycolysis. Int J Biol Macromol. Elsevier. 2019;129:601–7.

    Article  CAS  Google Scholar 

  • Rahman MR, Islam T, Zaman T, Shahjaman M, Karim MR, Huq F, et al. Identification of molecular signatures and pathways to identify novel therapeutic targets in Alzheimer’s disease: insights from a systems biomedicine perspective. Genomics. Elsevier. 2020;112(2):1290–9.

    Article  CAS  Google Scholar 

  • Rao VS, Srinivas K, Sujini GN, Kumar GN. Protein-protein interaction detection: methods and analysis. Int J Proteomics. Hindawi. 2014;2014.

  • Ratter JM, Rooijackers HMM, Hooiveld GJ, Hijmans AGM, de Galan BE, Tack CJ, et al. In vitro and in vivo effects of lactate on metabolism and cytokine production of human primary PBMCs and monocytes. Front Immunol. Frontiers. 2018;9:2564.

    Article  CAS  Google Scholar 

  • Rezaei T, Amini M, Hashemi ZS, Mansoori B, Rezaei S, Karami H, et al. microRNA-181 serves as a dual-role regulator in the development of human cancers. Free Radic. Biol. Med. Elsevier. 2019.

  • Rihan M, Nalla LV, Dharavath A, Shard A, Kalia K, Khairnar A. Pyruvate kinase M2: a metabolic bug in re-wiring the tumor microenvironment. Cancer Microenviron. Springer. 2019:1–19.

  • Roiniotis J, Dinh H, Masendycz P, Turner A, Elsegood CL, Scholz GM, et al. Hypoxia prolongs monocyte/macrophage survival and enhanced glycolysis is associated with their maturation under aerobic conditions. J Immunol Am Assoc Immnol. 2009;182(12):7974–81.

    CAS  Google Scholar 

  • Sahota P, Savitz SI. Investigational therapies for ischemic stroke: neuroprotection and neurorecovery. Neurotherapeutics. Springer. 2011;8(3):434–51.

    Article  CAS  Google Scholar 

  • Schaller MD. Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J Cell Sci. The Company of Biologists Ltd. 2010;123(7):1007–13.

    CAS  Google Scholar 

  • Seger R, Krebs EG. The MAPK signaling cascade. FASEB J. Wiley Online Library. 1995;9(9):726–35.

    CAS  Google Scholar 

  • Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell. Elsevier. 2005;7(1):77–85.

    Article  CAS  Google Scholar 

  • Selvi R. Role of SOX9 in the etiology of Pierre-Robin syndrome. Iran. J. Basic Med. Sci. Mashhad University of Medical Sciences. 2013;16(5):700.

    Google Scholar 

  • Semenza GL. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci. STKE. American Association for the Advancement of Science. 2007;2007(407):cm8–cm8.

    Google Scholar 

  • Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell Elsevier. 2012;148(3):399–408.

    Article  CAS  Google Scholar 

  • Senthelal S, Thomas MA. Arthritis. StatPearls [Internet]: StatPearls Publishing; 2019.

  • Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK, Batra SK. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin. Ther. Targets. Taylor & Francis. 2012;16(1):15–31.

    Article  CAS  Google Scholar 

  • Sevin M, Girodon F, Garrido C, De Thonel A. HSP90 and HSP70: implication in inflammation processes and therapeutic approaches for myeloproliferative neoplasms. Mediators Inflamm. Hindawi. 2015;2015.

  • Shang S, Hua F, Hu Z-W. The regulation of β-catenin activity and function in cancer: therapeutic opportunities. Oncotarget. Impact Journals, LLC. 2017;8(20):33972.

    Google Scholar 

  • Shirai T, Nazarewicz RR, Wallis BB, Yanes RE, Watanabe R, Hilhorst M, et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med. The Rockefeller University Press. 2016;213(3):337–54.

    CAS  Google Scholar 

  • Siragusa M, Thoele J, Bibli S, Luck B, Loot AE, de Silva K, et al. Nitric oxide maintains endothelial redox homeostasis through PKM 2 inhibition. EMBO J. 2019;38(17):e100938.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skommer J, Wlodkowic D, Deptala A. Larger than life: mitochondria and the Bcl-2 family. Leuk Res. Elsevier. 2007;31(3):277–86.

    Article  CAS  Google Scholar 

  • Smolková K, Plecitá-Hlavatá L, Bellance N, Benard G, Rossignol R, Ježek P. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int J Biochem Cell Biol. Elsevier. 2011;43(7):950–68.

    Article  CAS  Google Scholar 

  • Straub RH, Schradin C. Chronic inflammatory systemic diseases: an evolutionary trade-off between acutely beneficial but chronically harmful programs. Evol. Med. public Heal. Oxford University Press. 2016;2016(1):37–51.

    Google Scholar 

  • Suganuma K, Miwa H, Imai N, Shikami M, Gotou M, Goto M, et al. Energy metabolism of leukemia cells: glycolysis versus oxidative phosphorylation. Leuk Lymphoma. Taylor & Francis. 2010;51(11):2112–9.

    Article  CAS  Google Scholar 

  • Takenaka M, Yamada K, Lu T, Kang R, Tanaka T, Noguchi T. Alternative splicing of the pyruvate kinase M gene in a minigene system. Eur J Biochem. Wiley Online Library. 1996;235(1-2):366–71.

    Article  CAS  Google Scholar 

  • Tang C-Y, Mauro C. Similarities in the metabolic reprogramming of immune system and endothelium. Front. Immunol. Frontiers. 2017;8:837.

    Google Scholar 

  • Tang Q, Ji Q, Xia W, Li L, Bai J, Ni R, et al. Pyruvate kinase M2 regulates apoptosis of intestinal epithelial cells in Crohn’s disease. Dig Dis Sci. Springer. 2015;60(2):393–404.

    Article  CAS  Google Scholar 

  • Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. Nature Publishing Group. 2013;496(7444):238–42.

    CAS  Google Scholar 

  • Tejera D, Heneka MT. Microglia in Alzheimer’s disease: the good, the bad and the ugly. Curr. Alzheimer Res. Bentham Science Publishers. 2016;13(4):370–80.

    Article  CAS  Google Scholar 

  • Temmerman K, Simon B, Wilmanns M. Structural and functional diversity in the activity and regulation of DAPK-related protein kinases. FEBS J. Wiley Online Library. 2013;280(21):5533–50.

    CAS  Google Scholar 

  • Tsujimoto Y. Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes to cells. Wiley Online Library. 1998;3(11):697–707.

    Article  CAS  Google Scholar 

  • Tunissiolli NM, Castanhole-Nunes MMU, Biselli-Chicote PM, Pavarino ÉC, da Silva RF. Hepatocellular carcinoma: a comprehensive review of biomarkers, clinical aspects, and therapy. Asian Pacific J. cancer Prev. APJCP. Shahid Beheshti University of Medical Sciences. 2017;18(4):863.

    Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (80-. ). American Association for the Advancement of Science. 2009;324(5930):1029–33.

    Article  CAS  Google Scholar 

  • Wade SM, Ohnesorge N, McLoughlin H, Biniecka M, Carter SP, Trenkman M, et al. Dysregulated miR-125a promotes angiogenesis through enhanced glycolysis. EBioMedicine. Elsevier. 2019;47:402–13.

    Article  Google Scholar 

  • Walkowiak J, Banasiewicz T, Krokowicz P, Hansdorfer-Korzon R, Drews M, Herzig K-H. Fecal pyruvate kinase (M2-PK): a new predictor for inflammation and severity of pouchitis. Scand J Gastroenterol. Taylor & Francis. 2005;40(12):1493–4.

    Article  CAS  Google Scholar 

  • Wang H-J, Hsieh Y-J, Cheng W-C, Lin C-P, Lin Y, Yang S-F, et al. JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1α–mediated glucose metabolism. Proc Natl Acad Sci. National Acad Sciences. 2014;111(1):279–84.

    Article  CAS  Google Scholar 

  • Wang F, Wang K, Xu W, Zhao S, Ye D, Wang Y, et al. SIRT5 desuccinylates and activates pyruvate kinase M2 to block macrophage IL-1β production and to prevent DSS-induced colitis in mice. Cell Rep. Elsevier. 2017;19(11):2331–44.

    Article  CAS  Google Scholar 

  • Wang B, Liu S, Fan B, Xu X, Chen Y, Lu R, et al. PKM2 is involved in neuropathic pain by regulating ERK and STAT3 activation in rat spinal cord. J Headache Pain BioMed Central. 2018;19(1):7.

    Article  CAS  Google Scholar 

  • Wang Q, Lu D, Fan L, Li Y, Liu Y, Yu H, et al. COX-2 induces apoptosis-resistance in hepatocellular carcinoma cells via the HIF-1α/PKM2 pathway. Int J Mol Med. Spandidos Publications. 2019;43(1):475–88.

    Google Scholar 

  • Westermarck J, Ivaska J, Corthals GL. Identification of protein interactions involved in cellular signaling. Mol Cell Proteomics. ASBMB. 2013;12(7):1752–63.

    Article  CAS  Google Scholar 

  • Wiese EK, Hitosugi T. Tyrosine kinase signaling in cancer metabolism: PKM2 paradox in the warburg effect. Front. Cell Dev. Biol. Frontiers. 2018;6:79.

    Google Scholar 

  • Wu D, Pan W. GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci. Elsevier. 2010;35(3):161–8.

    Article  CAS  Google Scholar 

  • Xie M, Yu Y, Kang R, Zhu S, Yang L, Zeng L, et al. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat Commun. Nature Publishing Group. 2016;7(1):1–13.

    CAS  Google Scholar 

  • Xu R, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, et al. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res. AACR. 2005;65(2):613–21.

    Article  CAS  Google Scholar 

  • Yang W, Lu Z. Nuclear PKM2 regulates the Warburg effect. Cell cycle. Taylor & Francis. 2013;12(19):3343–7.

    Article  CAS  Google Scholar 

  • Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, et al. Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature. Nature Publishing Group. 2011;480(7375):118–22.

    CAS  Google Scholar 

  • Yang W, Xia Y, Cao Y, Zheng Y, Bu W, Zhang L, et al. EGFR-induced and PKCε monoubiquitylation-dependent NF-κB activation upregulates PKM2 expression and promotes tumorigenesis. Mol Cell. Elsevier. 2012a;48(5):771–84.

    Article  CAS  Google Scholar 

  • Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, et al. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol. Nature Publishing Group. 2012b;14(12):1295–304.

    Article  CAS  Google Scholar 

  • Yang L, Xie M, Yang M, Yu Y, Zhu S, Hou W, et al. PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis. Nat Commun. Nature Publishing Group. 2014;5(1):1–9.

    Google Scholar 

  • Yang P, Li Z, Li H, Lu Y, Wu H, Li Z. Pyruvate kinase M2 accelerates pro-inflammatory cytokine secretion and cell proliferation induced by lipopolysaccharide in colorectal cancer. Cell Signal. Elsevier. 2015;27(7):1525–32.

    Article  CAS  Google Scholar 

  • Yang L, Wang H, Liu L, Xie A. The role of insulin/IGF-1/PI3K/Akt/GSK3β signaling in parkinson’s disease dementia. Front. Neurosci. Frontiers. 2018a;12:73.

    Google Scholar 

  • Yang X, Chen W, Zhao X, Chen L, Li W, Ran J, et al. Pyruvate kinase M2 modulates the glycolysis of chondrocyte and extracellular matrix in osteoarthritis. DNA Cell Biol. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA. 2018b;37(3):271–7.

    CAS  Google Scholar 

  • Yang J, Dang G, Lü S, Liu H, Ma X, Han L, et al. T-cell–derived extracellular vesicles regulate B-cell IgG production via pyruvate kinase muscle isozyme 2. FASEB J. Wiley Online Library. 2019;33(11):12780–99.

    CAS  Google Scholar 

  • Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat. Rev. Mol. cell Biol. Nature Publishing Group. 2001;2(2):127–37.

    Article  CAS  Google Scholar 

  • Ye J, Mancuso A, Tong X, Ward PS, Fan J, Rabinowitz JD, et al. Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proc. Natl. Acad. Sci. National Acad Sciences. 2012;109(18):6904–9.

    Article  CAS  Google Scholar 

  • Zhang J, Gao Q, Zhou Y, Dier U, Hempel N, Hochwald SN. Focal adhesion kinase-promoted tumor glucose metabolism is associated with a shift of mitochondrial respiration to glycolysis. Oncogene. Nature Publishing Group. 2016;35(15):1926–42.

    CAS  Google Scholar 

  • Zhang Z, Yao L, Yang J, Wang Z, Du G. PI3K/Akt and HIF-1 signaling pathway in hypoxia-ischemia. Mol Med Rep. Spandidos Publications. 2018;18(4):3547–54.

    CAS  Google Scholar 

  • Zhao X, Guan J-L. Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev Elsevier. 2011;63(8):610–5.

    Article  CAS  Google Scholar 

  • Zhao X, Zhao L, Yang H, Li J, Min X, Yang F, et al. Pyruvate kinase M2 interacts with nuclear sterol regulatory element–binding protein 1a and thereby activates lipogenesis and cell proliferation in hepatocellular carcinoma. J Biol Chem Elsevier. 2018;293(17):6623–34.

    Article  CAS  Google Scholar 

  • Zhao P, Han S-N, Arumugam S, Yousaf MN, Qin Y, Jiang JX, et al. Digoxin improves steatohepatitis with differential involvement of liver cell subsets in mice through inhibition of PKM2 transactivation. Am. J. Physiol. Liver Physiol. American Physiological Society Bethesda, MD. 2019;317(4):G387–97.

    CAS  Google Scholar 

  • Zheng JIE. Energy metabolism of cancer: glycolysis versus oxidative phosphorylation. Oncol Lett. Spandidos Publications. 2012;4(6):1151–7.

    Article  CAS  Google Scholar 

  • Zhou J, Yi Q, Tang L. The roles of nuclear focal adhesion kinase (FAK) on cancer: a focused review. J Exp Clin Cancer Res. Springer. 2019a;38(1):250.

    Article  Google Scholar 

  • Zhou Q, Xu J, Liu M, He L, Zhang K, Yang Y, et al. Warburg effect is involved in apelin-13-induced human aortic vascular smooth muscle cells proliferation. J Cell Physiol. Wiley Online Library. 2019b;234(9):14413–21.

    Article  CAS  Google Scholar 

  • Zhu R, Lei Y-Q, Zhao D-C. Overexpression of CXCL14 alleviates ventilator-induced lung injury through the downregulation of PKM2-mediated cytokine production. Mediators Inflamm. Hindawi. 2020;2020.

  • Zu XL, Guppy M. Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun. Elsevier. 2004;313(3):459–65.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Director, NIPER-Ahmedabad for her support and encouragement. The communication number for publication is NIPER-A/438/5/2020. Authors SP, AD, PM, AS, AC, HJ, AD, DS, and LVN are thankful to NIPER-Ahmedabad, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India for their fellowships.

Consent for publication

Not applicable

Availability of data and materials

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

Dr. Amit Shard designed the concept of the protein–protein interaction and role in cancer. Sagarkumar Patel and Dr. Amit Shard wrote the role of PKM2 in chronic inflammation and cancer. Sagarkumar Patel, Anwesha Das, Payal Meshram, Ayushi Sharma, and Arnab Chowdhury helped in the literature search and data collection. Heena Jariyal and Dr. Akshay Srivastava wrote the role of glycolysis in cancer. Aishika Datta, Deepaneeta Sarmah, and Dr. Pallab Bhattacharya wrote the role of PKM2 in ischemic stroke. Lakshmi Vineela and Dr. Amit Khairnar wrote the role of the PKM2 in inflammatory diseases. Dr. Bichismita Sahu wrote the role of the PKM2 in Alzheimer’s disease. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Amit Shard.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S., Das, A., Meshram, P. et al. Pyruvate kinase M2 in chronic inflammations: a potpourri of crucial protein–protein interactions. Cell Biol Toxicol 37, 653–678 (2021). https://doi.org/10.1007/s10565-021-09605-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-021-09605-0

Keywords

Navigation