Skip to main content
Log in

Dynamic changes in nuclear localization of a DNA-binding protein tyrosine phosphatase TCPTP in response to DNA damage and replication arrest

  • Original Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

TCPTP is an ubiquitously expressed tyrosine phosphatase with a predominant nuclear isoform (TC45) that binds DNA and has a role in G1-S cell cycle progression. Its deregulation by overexpression induces p53-dependent apoptosis, but the physiological role of its DNA-binding function is not known. Using immunocytochemistry and subcellular fractionation, we investigated changes in its localization in response to DNA damage and replication arrest. Rat fibroblasts showed an increase in endogenous TCPTP bound to nuclear components 3 h after exposure to sublethal dose of UV irradiation. Fractionation of nuclei showed an increase in chromatin and nuclear matrix associated component of TC45. After UV treatment, cells showed a concentration of TCPTP in discrete foci and enhanced colocalization with PCNA and p53BP1. Cells arrested at G1-S transition by hydroxyurea showed a loss of the predominant nuclear staining of TCPTP and an increase in cytoplasmic staining. Upon release from replication block, there was a time-dependent increase in number of cells showing prominent nuclear localization. This change in localization coincides with that of PCNA and Cdk2, two other nuclear proteins having functions in DNA replication. These results provide evidence for the regulation of TCPTP in response to DNA damage and replication stress. Dynamic changes in its localization coincident with that of PCNA suggest involvement of TCPTP in DNA repair and replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HU:

Hydroxyurea

TCPTP:

T-cell protein tyrosine phosphatase

UV:

Ultraviolet

PCNA:

Proliferating cell nuclear antigen

References

  • Aragane Y, Kulms D, Luger TA, Schwarz T. Downregulation of IFN-γ activated Stat-1 by UV light. PNAS. 1997;94:11490–5.

    Article  PubMed  CAS  Google Scholar 

  • Balajee AS, May A, Bohr VA. Fine structural analysis of DNA repair in mammalian cells. Mut Res. 1998;404:3–11.

    Article  CAS  Google Scholar 

  • Becker-Jensen S, Mailand N. Assembly and function of DNA double-strand break repair foci in mammalian cells. DNA Repair. 2010;9:1219–28.

    Article  Google Scholar 

  • Cans C, Mangano R, Barita D, et al. Nuclear tyrosine phosphorylation: the beginning of a map. Biochem Pharmacol. 2000;60:1203–15.

    Article  PubMed  CAS  Google Scholar 

  • Cool DE, Tonks NK, Charbonneau H, et al. cDNA isolated from a human T-cell library encodes a member of the PTPase family. Proc Natl Acad Sci. 1989;86:5257–61.

    Article  PubMed  CAS  Google Scholar 

  • Elock LS, Bridges JM. Exporing the effects of a dysfunctional nuclear matrix. Biochem Soc Trans. 2008;36:1378–83.

    Article  Google Scholar 

  • Fujito M, Yamada C, Golo H, Yokoyama N, Kuzushima K, Inagaki M, Tsurumi T. Cell cycle regulation of human cdc6 protein. JBC. 1999;274:25927.

    Article  Google Scholar 

  • Ganapati U, Gupta S, Radha V, Sudhakar C, Manogaran PS, Swarup G. A nuclear PTPase induces shortening of G1 phase and increase in c-Myc protein level. Exp Cell Res. 2001;265:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Gupta V, Swarup G. Evidence for a role of transmembrane protein p25 in localization of PTPase TC48 to the ER. J Cell Sci. 2006;119:1703–14.

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Radha V, Sudhakar C, Swarup G. A nuclear tyrosine phosphatase activates p53 and induces caspase-1 dependent apoptosis. FEBS Lett. 2002;532:61–6.

    Article  PubMed  CAS  Google Scholar 

  • Jagatheesan G, Thanumalayan S, Muralikrishna B, et al. Colocalization of intranuclear lamin foci with RNA splicing factors. J Cell Science. 1999;112:4651–61.

    PubMed  CAS  Google Scholar 

  • Kamatkar S, Radha V, Nambirajan S, Reddy RS, Swarup G. Two splice variants of a tyrosine phosphatase differ in substrate specificity, DNA binding and sub-cellular location. J Biol Chem. 1996;271:26755–61.

    Article  PubMed  CAS  Google Scholar 

  • Kim BJ, Lec H. Lys-110 is essential for targeting PCNA to replication and repair foci and the K110A mutant activates apoptosis. Biol Cell. 2008;100:675–86.

    Article  PubMed  CAS  Google Scholar 

  • Lam MH, Michell BJ, Fodero-Tavoletti MT, Kemp BE, Tonks NK, Tiganis T. Cellular stress regulates nucleocytoplasmic distribution of the protein tyrosine phosphatase TCPTP. J Biol Chem. 2001;276:37700–7.

    Article  PubMed  CAS  Google Scholar 

  • Le Gac G, Esteve PO, Ferec C, Pradhan S. DNA damage induced downregulation of human cdc25c and cdc2 is mediated by cooperation between p53 and Mdml. JBC. 2006;281:24161–70.

    Article  Google Scholar 

  • Li L and Zou L. Sensing, signaling and responding to DNA damage: Organization of checkpoint pathways in mammalian cells. J Cell Biochem 2005;94:298–306

  • Liu X, Zhou B, Xue L, Shih J, Tye K, Qi C, Yen Y. The RR sub-unit M2B subcellular localization and functional importance for DNA replication in physiological growth of KB cells. Biochem Pharmacol. 2005;70:1288–97.

    Article  PubMed  CAS  Google Scholar 

  • Lorenzen JA, Dadabay CY, Fischer EH. C-terminal sequence motifs target the TCPTP to the ER and nucleus. J Cell Biol. 1995;131:631–45.

    Article  PubMed  CAS  Google Scholar 

  • Mancini R, Marucci L, Benedetti A, Jezequel AM, Orlandi F. Immunohistochemical analysis of S-phase cells in normal human and rat liver by PC10 monoclonal antibody. Liver. 1994;14:57–64.

    PubMed  CAS  Google Scholar 

  • Matsumoto Y. Molecular mechanism of PCNA-dependent BER. Prog Nucl Acid Res. 2001;68:129–38.

    Article  CAS  Google Scholar 

  • Mitra A, Kalayarasan S, Gupta V, Radha V. TCPTP dephosphorylates C3G and negatively regulates differentiation of human NB cells. PLoS ONE. 2011;6:e23681.

    Article  PubMed  CAS  Google Scholar 

  • Mortusewicz O, Leonhardt H, Cardoso MC. Spatiotemporal dynamics of regulatory protein recruitment at DNA damage sites. J Cell Biochem. 2008;104:1562–9.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama A, Kawara A, Igarashi A, Yamaguchi N. Involvement of the N-terminal unique domain of Chk tyrosine kinase in Chk-induced tyrosine phosporylation in the nucleus. Exp Cell Res. 2006;312:2252–63.

    Article  PubMed  CAS  Google Scholar 

  • Nambirajan S, Reddy RS, Swarup G. Enhanced expression of a chromatin associated PTPase during Go to S transition. J Biosci. 1995;20:461–71.

    Article  CAS  Google Scholar 

  • Nambirajan S, Radha V, Kamatkar S, Swarup G. PTP-S2, a nuclear PTPase is phosphorylated and excluded from condensed chromosomes during mitosis. J Biosci. 2000;25:33–40.

    Article  PubMed  CAS  Google Scholar 

  • Radha V, Swarup G. Nuclear protein tyrosine phosphatases and control of cell proliferation. Curr Sci. 1997;73:418–29.

    CAS  Google Scholar 

  • Radha V, Kamatkar S, Swarup G. Binding of a PTPase to DNA through its carboxy-terminal non-catalytic domain. Biochemistry. 1993;32:2194–201.

    Article  PubMed  CAS  Google Scholar 

  • Radha V, Nambirajan S, Swarup G. Sub-cellular localization of a PTPase: evidence for association with chromatin. Biochem J. 1994;299:41–7.

    PubMed  CAS  Google Scholar 

  • Radha V, Nambirajan S, Swarup G. Association of Lyn tyrosine kinase with the nuclear matrix and cell cycle-dependent changes in matrix-associated tyrosine kinase activated. Eur J Biochem. 1996;236:352–9.

    Article  PubMed  CAS  Google Scholar 

  • Radha V, Nambirajan S, Swarup G. Overexpression of a nuclear PTPase increases cell proliferation. FEBS Lett. 1997;409:33–6.

    Article  PubMed  CAS  Google Scholar 

  • Radha V, Sudhakar C, Swarup G. Induction of p53 dependent apoptosis upon overexpression of a nuclear tyrosine phosphatase. FEBS Lett. 1999;453:308–12.

    Article  PubMed  CAS  Google Scholar 

  • Rajendrakumar GV, Radha V, Swarup G. Stabilization of a PTPase mRNA upon mitogenic stimulation of T-lymphocytes. BBA. 1993;1216:205–12.

    Article  PubMed  CAS  Google Scholar 

  • Sancar A, Lindsey-Boltz LA, Unsal-Kacmez K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Ann Rev Biochem. 2004;73:39–85.

    Article  PubMed  CAS  Google Scholar 

  • Shaul Y, Ben-Yehoyada M. Role of c-Abl in the DNA damage stress response. Cell Res. 2005;15:33–5.

    Article  PubMed  CAS  Google Scholar 

  • Shields BJ, Hauser C, Bukczynska PE, et al. DNA replication stalling attenuates TK signaling to suppress S phase progression. Can Cell. 2008;14:166–79.

    Article  CAS  Google Scholar 

  • Sumrejkanchenakij P, Eto K, Ikeda MA. Cytoplasmic sequestration of cyclin D1 associated with cell cycle withdrawal of neuroblastoma cells. BBRC. 2006;340:302–8.

    Google Scholar 

  • Swarup G, Radha V. Nuclear matrix: methods of preparation. Encyclopaedia of life sciences. New York: Wiley; 2001.

    Google Scholar 

  • Swarup G, Kamatkar S, Radha V, Rema V. Molecular cloning and expression of a protein tyrosine phosphatase showing homology with transcription factors Fos and Jun. FEBS Letts. 1991;280:65–9.

    Article  CAS  Google Scholar 

  • Ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, Zhu W, Tremblay M, David M, Shuai K. Identification of a nuclear Stat-1 PTPase. Mol Cell Biol. 2002;22:5662–8.

    Article  PubMed  Google Scholar 

  • Tillmann U, Wagner J, Boeboom D, Westphal H, Tremblay ML. Nuclear localization and cell cycle regulation of a murine PTPase. Mol Cell Biol. 1994;14:3030–40.

    PubMed  CAS  Google Scholar 

  • Warbrick E. The puzzle of PCNA’s many partners. BioEssays. 2000;22:997–1006.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Weischselbaum R, Kharbanda S, Kufe D. Functional interaction between SHPTP1 and the Lyn tyrosine kinase in the apoptotic response to DNA damage. J Biol Chem. 1999;274:34663–8.

    Article  PubMed  CAS  Google Scholar 

  • You-Ten KE, Muire ES, Itie A, Michaliszyn E, Wagner J, Jothy S, Lapp WS, Tremblay ML. Impaired bone marrow microenvironment and immune function in TCPTP deficient mice. J Exp Med. 1997;186:683–93.

    Article  PubMed  CAS  Google Scholar 

  • Yuan L, Yu WM, Yuan Z, Haudenschild CC, Qu CK. Role of SHP-2 tyrosine phosphatase in DNA damage-induced cell death response. J Biol Chem. 2003;278:15208–16.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Veena Parnaik for providing the lamin antibody and Mrs. Nandini Rangaraj for the help in confocal microscopy. We thank Dr. Ghanshyam Swarup for critical reading of the manuscript and for the GFP-TC45 expression construct. NKS was the recipient of a Postdoctoral Fellowship from the Department of Biotechnology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vegesna Radha.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PPT 4649 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sree, N.K., Anesh, R. & Radha, V. Dynamic changes in nuclear localization of a DNA-binding protein tyrosine phosphatase TCPTP in response to DNA damage and replication arrest. Cell Biol Toxicol 28, 409–419 (2012). https://doi.org/10.1007/s10565-012-9232-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-012-9232-z

Keywords

Navigation