Skip to main content
Log in

Carbonyl stress: malondialdehyde induces damage on rat hippocampal neurons by disturbance of Ca2+ homeostasis

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the influences of carbonyl stress induced by malondialdehyde (MDA), a typical intermediate of lipid peroxidation, on intracellular free Ca2+ concentration ([Ca2+]i) alterations in cultured hippocampal neurons of rat. The microphotographic study clearly demonstrated that the hippocampal neurons became gradually damaged following exposure to different concentrations of MDA. Further study indicated that the plasma membrane Ca2+-ATPase (PMCA) activity was inhibited by MDA in a concentration- and time-dependent manner. The supplementation of 100 μM MDA was found to cause a notable early phase increase of [Ca2+]i in hippocampal neuron cultures followed by a more pronounced late-phase elevation of [Ca2+]i. Such effect of MDA was prevented by the addition of nimodipine, an inhibitor of L-type calcium channel or by an extracellular Ca2+ chelator EGTA. The identification of the calcium signalling pathways were studied by applying U73122, an inhibitor of PL-C, and H-89, an inhibitor of protein kinase A (PKA), showing the involvement of PL-C/IP3 pathway but not the PKA/cAMP pathway. These results suggested that MDA-related carbonyl stress caused damages of rat hippocampal neurons by triggering Ca2+ influx and influencing Ca2+ homeostasis in cultured neurons, and also MDA may act as a signalling molecule regulating Ca2+ release from intracellular stores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

[Ca2+]i :

intracellular free Ca2+ concentration

cAMP:

cyclic adenosine monophosphate

ER:

endoplasmic reticulum

EGTA:

ethylene glycol bis-(β-aminoethyl ether) N,N,N′,N’-tetraacetic acid

H-89:

N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride

HEPES:

N-(2-hydroxyethyl)-piperazine-N′-(2-ethanesulfonic acid)

4-HNE:

4-hydroxynonenal

IP3:

inositol-1,4,5-trisphophate

MDA:

malondialdehyde

PL-C:

phospholipase C

PIP2:

phosphatidylinositol-4,5-bisphophate

cAMP/PKA:

cyclic adenosine monophosphate/protein kinase A

PMCA:

plasma membrane Ca2+-ATPase

PUFA:

polyunstaturated fatty acid

TMP:

1, 1, 3, 3-tetramethoxypropane

U73122:

1-(6-{[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl)-1H-pyrrole-2,5-dione

VOCC:

voltage operation calcium channel

References

  • Aldini G, Carini M, Beretta G, et al. Carnosine is a quencher of 4-hydroxynonenal: through what mechanism of reaction? Biochem Biophys Res Commun 2002;298:699–706. doi:10.1016/S0006-291X(02)02545-7.

    Article  PubMed  CAS  Google Scholar 

  • Altin JG, Bygrave FL. Second messengers and the regulation of Ca2+ fluxes by Ca2+-mobilizing agonists in rat liver. Biol Rev Camb Philos Soc 1988;63:551–611. doi:10.1111/j.1469-185X.1988.tb00670.x.

    Article  PubMed  CAS  Google Scholar 

  • Atkinson A, Gatenby AD, Lowe AG. The determination of inorganic orthophosphate in biological systems. Biochim Biophys Acta 1973;320:195–204.

    PubMed  CAS  Google Scholar 

  • Bandali KS, Belanger MP, Wittnich C. Hyperoxia causes oxygen free radical-mediated membrane injury and alters myocardial function and hemodynamics in the newborn. Am J Physiol Heart Circ Physiol 2004;287:H553–9. doi:10.1152/ajpheart.00657.2003.

    Article  PubMed  CAS  Google Scholar 

  • Bogdanova A, Ogunshola OO, Bauer C, et al. Molecular mechanisms of oxygen-induced regulation of Na+/K+ pump. Adv Exp Med Biol 2003;536:231–8.

    PubMed  CAS  Google Scholar 

  • Brewer GJ, Torricelli JR, Evege EK, et al. Optimized survival of hippocampal neurons in B27-supplemented neurobasal: a new serum-free medium combination. J Neurosci Res 1993;35:567–76. doi:10.1002/jnr.490350513.

    Article  PubMed  CAS  Google Scholar 

  • Buyukuysal RL. Ischemia and reoxygeneration induced amino acid release and tissue damage in the slices of rat corpus striatum. Amino Acids 2004;27:57–67. doi:10.1007/s00726-004-0073-9.

    Article  PubMed  CAS  Google Scholar 

  • Campbell LW, Hao SY, Thibault O, et al. Aging changes in voltage-gated calcium currents in hippocampal CA1 neurons. J Neurosci 1996;16:6286–95.

    PubMed  CAS  Google Scholar 

  • Carini R, Bellomo G, Paradisi L, et al. 4-Hydroxynonenal triggers Ca2+ influx in isolated rat hepatocytes. Biochem Biophys Res Commun 1996;21:772–6. doi:10.1006/bbrc.1996.0137.

    Article  Google Scholar 

  • Crifo C, Capuozzo E, Siems W, et al. Inhibition of ion transport ATPase by 4-HNE. Biofactors 2005;24:137–40.

    Article  PubMed  CAS  Google Scholar 

  • DeLorenzo RJ, Freedman SD, Yohe WB, et al. Stimulation of Ca2+-dependent neurotransmitter release and presynaptic nerve terminal protein phosphorylation by calmodulin and a calmodulin-like protein isolated from synaptic vesicles. Proc Natl Acad Sci USA 1979;76:1838–42. doi:10.1073/pnas.76.4.1838.

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 1991;11:81–128. doi:10.1016/0891-5849(91)90192-6.

    Article  PubMed  CAS  Google Scholar 

  • Fujita T. Calcium homeostasis and signalling in aging. Adv Cell Aging Gerontol 2002;10:13–26.

    Article  CAS  Google Scholar 

  • Gutierrez-Martin Y, Martin-Romero FJ, Henao F, et al. Alteration of cytosolic free calcium homeostasis by SIN-1: high sensitivity of L-type Ca2+ channels to extracellular oxidative/nitrosative stress in celebellar granule cells. J Neurochem 2005;92:973–89. doi:10.1111/j.1471-4159.2004.02964.x.

    Article  PubMed  CAS  Google Scholar 

  • Hahn J, Jung W, Kim N, et al. Characterization and regulation of rat microglial Ca2+ release-activated Ca2+ (CRAC) channel by protein kinases. Glia 2000;31:118–24.

    Article  PubMed  CAS  Google Scholar 

  • Ishii T, Kumazawa S, Sakurai T, et al. Mass spectroscopic characterization of protein modification by malondialdehyde. Chem Res Toxicol 2006;19:122–9. doi:10.1021/tx050231p.

    Article  PubMed  CAS  Google Scholar 

  • Khachaturian ZS. Towards theories of brain aging. In: Kay DS, Burrows GW, editors. Handbook of Studies on Psychiatry and Old Age. Amsterdam: Elsevier; 1984. p. 7–30.

    Google Scholar 

  • Kikugawa K, Machida Y, Kida M, et al. Study on peroxidized lipids III: Fluorescent pigments derived from the reaction of malonaldehyde and amino acids. Chem Pharm Bull (Tokyo) 1981;29:3003–11.

    CAS  Google Scholar 

  • Li L, Guolin L, Shuli S, Dazhong Y. Substantial reaction between histamine and malondialdehyde: A new observation of carbonyl stress. Neuroendocrinol Lett 2005;26:799–805.

    PubMed  Google Scholar 

  • Markesbery WR, Lovell MA. Four-hydrononenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol Aging 1998;19:33–6. doi:10.1016/S0197-4580(98)00009-8.

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Magnus T. Ageing and neuronal vulnerability. Nat Rev Neurosci 2006;7:278–94. doi:10.1038/nrn1886.

    Article  PubMed  CAS  Google Scholar 

  • Michaelis EK, Michaelis ML, Chang HH, et al. High affinity Ca2+-stimulated Mg2+-dependent ATPase in rat brain synaptosomes synaptic membranes and microsomes. J Biol Chem 1983;258:6101–8.

    PubMed  CAS  Google Scholar 

  • Moyer JR, Thompson LT, Black JP, et al. Nimodipine increases excitability of rabbit CA1 pyramidal neurons in an age- and concentration-dependent manner. J Neurophysiol 1992;68:2100–9.

    PubMed  CAS  Google Scholar 

  • O'Brien PJ, Siraki AG, Shangari N. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol 2005;35:609–62. doi:10.1080/10408440591002183.

    Article  PubMed  Google Scholar 

  • Oe T, Lee SH, Silva Elipe MV, et al. A novel lipid hydroperoxide-derived modification to arginine. Chem Res Toxicol 2003;16:1598–605. doi:10.1021/tx034178l.

    Article  PubMed  CAS  Google Scholar 

  • Paschen W. Role of calcium in neuronal cell injury: which subcellular compartment is involved? Brain Res Bull 2000;53:409–13. doi:10.1016/S0361-9230(00)00369-5.

    Article  PubMed  CAS  Google Scholar 

  • Paschen W. Dependence of vital cell function on endoplasmic reticulum calcium levels: implications for the mechanisms underlying neuronal cell injury in different pathological states. Cell Calcium 2001;29:1–11. doi:10.1054/ceca.2000.0162.

    Article  PubMed  CAS  Google Scholar 

  • Paschen W, Doutheil J. Disturbance of the functioning of endoplasmic reticulum: a key mechanism underlying neuronal cell injury? Acta Neurochir Suppl (Wien) 1999;73:1–5.

    CAS  Google Scholar 

  • Petrushanko I, Bogdanov N, Bulygina E, et al. Na–K-ATPase in rat cerebellar granule cells is redox sensitive. Am J Physiol Regul Integr Comp Physiol 2006;290:R916–25. doi:10.1152/ajpregu.00038.2005.

    PubMed  CAS  Google Scholar 

  • Porter NM, Thibault O, Thibault V, et al. Calcium channel density and hippocampal cell death with age in long-term culture. J Neurosci 1997;17:5629–39.

    PubMed  CAS  Google Scholar 

  • Pryor WA, Stanley P. Letter: a suggested mechanism for the production of malondialdhyde during the autoxidation of polyunsaturated fatty acid. Nonenzymatic production of prostaglandin endoperoxides during autoxidation. J Org Chem 1975;40:3615–7. doi:10.1021/jo00912a038.

    Article  PubMed  CAS  Google Scholar 

  • Putney JW Jr, Aub DL, Taylor CW, et al. Formation and biological action of inositol 1,4,5-trisphosphate. Fed Proc 1986;45:2634–8.

    PubMed  CAS  Google Scholar 

  • Rossi MA, Fidale F, Garramone A, et al. Effect of 4-hydroxylalkenals on hepatic phosphatidylinositol-4,5-bisphosphate-phospholipase C. Biochem Pharmacol 1990;39:1715–9. doi:10.1016/0006-2952(90)90116-3.

    Article  PubMed  CAS  Google Scholar 

  • Rossi MA, Di Mauro C, Dianzani MU. Experimental studies on the mechanism of phospholipase C activation by the lipid peroxidation products 4-hydroxynonenal and 2-nonenal. Int J Tissue React 2001;23:45–50.

    PubMed  CAS  Google Scholar 

  • Saini HK, Elimban V, Dhalla NS. Attenuation of extracellular ATP response in cardiomyocytes isolated from hearts subjected to ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2005;289:H614–23. doi:10.1152/ajpheart.00101.2005.

    Article  PubMed  CAS  Google Scholar 

  • Slatter DA, Avery NC, Bailey AJ. Identification of a new cross-link and unique histidine adduct from bovine serum albumin incubated with malondialdehyde. J Biol Chem 2004;27:961–9.

    Google Scholar 

  • Uchida K, Stadtman ER. Modification of histidine residues in proteins by reaction with 4-hydroxynonenal. Proc Natl Acad Sci USA 1992;89:4544–8. doi:10.1073/pnas.89.10.4544.

    Article  PubMed  CAS  Google Scholar 

  • Uchida K, Stadtman ER. Covalent attachment of 4-hydroxyonenal to glyceraldehydes-3-phosphate dehydrogenase. J Biol Chem 1993;268:6388–93.

    PubMed  CAS  Google Scholar 

  • Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem 2005;12:1161–208. doi:10.2174/0929867053764635.

    Article  PubMed  CAS  Google Scholar 

  • Vergun O, Sobolevsky AI, Yelshansky MV, et al. Exploration of the role of reactive oxygen species in glutamate neurotoxicity in rat hippocampal neurons in culture. J Physiol 2001;531:147–63. doi:10.1111/j.1469-7793.2001.0147j.x.

    Article  PubMed  CAS  Google Scholar 

  • Verkhratsky A, Toescu EC. Calcium and neuronal ageing. Trends Neurosci 1998;21:2–7. doi:10.1016/S0166-2236(97)01156-9.

    Article  PubMed  CAS  Google Scholar 

  • Wu ML, Chen WH, Liu IH, et al. A novel effect of cyclic AMP on capacitative Ca2+ entry in cultured rat cerebellar astrocytes. J Neurochem 1999;73:1318–28. doi:10.1046/j.1471-4159.1999.0731318.x.

    Article  PubMed  CAS  Google Scholar 

  • Yin DZ. Biochemical basis of lipofuscin, ceroid, and age pigment-like fluoreophores. Free Radic Biol Med 1996;21:871–88. doi:10.1016/0891-5849(96)00175-X.

    Article  PubMed  CAS  Google Scholar 

  • Zaidi A, Gao J, Squiier TC, et al. Age-related decrease in brain synaptic membrane Ca2+-ATPase in F344/BNF1 rats. Neurobiol Aging 1998;19:487–95. doi:10.1016/S0197-4580(98)00078-5.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the technical support of Dr. Xiao Bo at the Xiangya Hospital of Central-South University, Department of Neurology. Constructive suggestions and technical support by Dr. Wang Meichi at the Proteomic Laboratory of Hunan Normal University are gratefully acknowledged. This work was supported by the Key Research Program of the Scientific Bureau of Hunan Province (06FJ3001) and the National Key Basic Research Programme—the 973-Projects (2007CB507404).

Disclosure statement

We, all authors, hereby state that there is neither actual nor potential conflicts of interest including any financial, personal or other relationships with other people or organizations within 3 years of beginning the work submitted that could inappropriately influence their work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguang Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, J., Chen, J., He, H. et al. Carbonyl stress: malondialdehyde induces damage on rat hippocampal neurons by disturbance of Ca2+ homeostasis. Cell Biol Toxicol 25, 435–445 (2009). https://doi.org/10.1007/s10565-008-9097-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-008-9097-3

Keywords

Navigation