Skip to main content
Log in

Comparative studies of the antioxidant effects of a naturally occurring resveratrol analogue – trans-3,3′,5,5′-tetrahydroxy-4′-methoxystilbene and resveratrol – against oxidation and nitration of biomolecules in blood platelets

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The action of two phenolic compounds isolated from the bark of Yucca schidigera: trans-3,3′,5,5′-tetrahydroxy-4′-methoxystilbene and its analogue - resveratrol (trans-3,4′,5-trihydroxystilbene, present also in grapes and wine) on oxidative/nitrative stress induced by peroxynitrite (ONOO, which is strong physiological oxidant and inflammatory mediator) in human blood platelets was compared. The trans-3,3′,5,5′-tetrahydroxy-4′-methoxystilbene, like resveratrol, significantly inhibited protein carbonylation and nitration (measured by enzyme-linked immunosorbent assay method) in the blood platelets treated with peroxynitrite (0.1 mM) and markedly reduced an oxidation of thiol groups of proteins (estimated with 5,5′-dithio-bis(2-nitro-benzoic acid)] or glutathione (measured by high performance liquid chromatography method) in these cells. The trans-3,3′,5,5′-tetrahydroxy-4′-methoxystilbene, like resveratrol, also caused a distinct reduction of platelet lipid peroxidation induced by peroxynitrite. The obtained results indicate that in vitro trans-3,3′,5,5′-tetrahydroxy-4′-methoxystilbene and resveratrol have very similar protective effects against peroxynitrite-induced oxidative/nitrative damage to the human platelet proteins and lipids. Moreover, trans-3,3′,5,5′-tetrahydroxy-4′-methoxystilbene proved to be even more potent than resveratrol in antioxidative tests. We conclude that the novel tested phenolic compound – trans-3,3′,5,5′-tetrahydroxy-4′-methoxystilbene isolated from Y. schidigera bark possessing Generally Recognized As Safe label given by the Food and Drug Administration and allows their human dietary use – seems to be a promising candidate for future evaluations of its antioxidative activity and may be a good candidate for scavenging peroxynitrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ando Y, Steiner M. Sulfhydryl and disulfide groups of platelet membranes: determination of disulfide groups. Biochim Biophys Acta. 1973a;311:26–37.

    Article  PubMed  CAS  Google Scholar 

  • Ando Y, Steiner M. Sulfhydryl and disulfide groups of platelet membranes: determination of sulfhydryl groups. Biochim Biophys Acta. 1973b;311:38–44.

    Article  PubMed  CAS  Google Scholar 

  • Arteel GE, Briviba K, Sies H. Protection against peroxynitrite. FEBS Lett. 1999;445:226–30.

    Article  PubMed  CAS  Google Scholar 

  • Arts MJTJ, Haenen GRMM, Wilms LC, Beetstra SAJN, Heijnen CGM, Voss HP et al. Interactions between flavonoids and proteins: effect on the total antioxidant capacity. J Agric Food Chem. 2002;50:1184–7.

    Article  PubMed  CAS  Google Scholar 

  • Bald E, Chwatko G, Glowacki R, Kusmierek K. Analysis of plasma thiols by high-performance liquid chromatography with ultraviolet detection. J Chromatogr. 2004;1032:109–15.

    Article  CAS  Google Scholar 

  • Balestrieri C, Felice F, Piacente S, Pizza C, Montoro P, Oleszek W et al. Relative effects of phenolics constituents from Yucca schidigera Roezl. Bark on kaposi’s sarcoma cell proliferation, migration, and PAF synthesis. Biochem Pharmacol. 2006;71:1479–87.

    Article  PubMed  CAS  Google Scholar 

  • Bartosz G. Peroxynitrite: mediator of the toxic action of nitric oxide. Acta Biochim Pol. 1996;43:645–59.

    PubMed  CAS  Google Scholar 

  • Bouaziz A, Romera-Castillo C, Salido S, Linares-Palomino PJ, Alterejos J, Bartegi A et al. Cinnamtannin B-1 from bay wood exhibits antiapoptotic effects in human platelets. Apoptosis. 2007;12:489–98.

    Article  PubMed  CAS  Google Scholar 

  • Brito O, Almeida LM, Dinis TCP. The interaction of resveratrol with ferrylmyoglobin and peroxynitrite; protection against LDL oxidation. Free Radic Res. 2002;36:621–31.

    Article  PubMed  CAS  Google Scholar 

  • Buss H, Chan TP, Sluis KB, Domigan NM, Winterbourn CC. Protein carbonyl measurement by a sensitive ELISA method. Free Radic Biol Med. 1997;23:361–6.

    Article  PubMed  CAS  Google Scholar 

  • Calderón AA, Zapata JM, Munoz R, Pedreno MA, Ros Barceló A. Resveratrol production as a part of the hypersensitive-like response of grapevine cells to an elicitor from Trichoderma viride. New Phytol. 1993;124:455–63.

    Article  Google Scholar 

  • Chen T, Li J, Cao J, Xu Q, Komatsu K, Namba T. A new flavanone isolated from rhizoma smilacis glabrae and the structural requirements of its derivatives for preventing immunological hepatocyte damage. Planta Med. 1999;65:56–9.

    Article  PubMed  CAS  Google Scholar 

  • Crane MS, Ollosson R, Moore KP, Rossi AG, Megson IL. Novel role for low molecular weight plasma thiols in nitric oxide-mediated control of platelet function. J Biol Chem. 2002;277:46858–63.

    Article  PubMed  CAS  Google Scholar 

  • Daniel O, Meier MS, Schlatter J, Schlahter J, Frischhnecht P. Selected phenolic compounds in cultivated plants: ecologic functions, health implications, and modulation by pesticides. Environ Health Perspect. 1999;17:109–14.

    Article  Google Scholar 

  • Dong Z. Molecular mechanism of the chemopreventive effect of resveratrol. Mutat Res. 2003;523–524:145–50.

    PubMed  Google Scholar 

  • Ducrocq C, Blanchard B, Pignatelli B, Oshima H. Peroxynitrite: an endogenous oxidizing and nitrating agent. Cell Mol Life Sci. 1999;55:1068–77.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez MI, Pedro JR, Seoane E. Two polyhydroxystilbenes from stems of Phoenix dactylifera. Phytochemistry. 1983;22:2819–21.

    Article  CAS  Google Scholar 

  • Fiala ES, Sodum RS, Bhattacharaya M, Li H. (-)-Epigallocatechin gallate, a polyphenolic tea antioxidant, inhibits peroxynitrite-mediated formation of 8-oxodeoxyguanosine and 3-nitrotyrosine. Experientia. 1996;52:922–6.

    Article  PubMed  CAS  Google Scholar 

  • Fremont L, Belguendouz L, Delpal S. Antioxidant activity of resveratrol and alcohol-free wine polyphenols related to LDL oxidation and polyunsaturated fatty acids. Life Sci. 1999;64:2511–21.

    Article  PubMed  CAS  Google Scholar 

  • Giustarini D, Campocia G, Fanett G, Rossi R, Giannerini F, Lusini L, Di Simplicio P. Minor thiols cysteine and cysteinylglycine regulate the competition between glutathione and protein SH groups in human platelets subjected to oxidative stress. Arch Biochem Biophys. 2000;380:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Glowacki R, Wójcik K, Bald E. Facile and sensitive method for the determination of mesna in plasma by high-performance liquid chromatography with ultraviolet detection. J Chromatogr. 2001;914:29–35.

    Article  CAS  Google Scholar 

  • Hakimudin F, Paliyath G, Meckling K. Selective cytotoxicity of a red grape wine flavonoid fraction against MCF-7 cells. Breast Cancer Res Treat. 2004;85:65–79.

    Article  Google Scholar 

  • Hata K, Baba K, Kozawa M. Chemical studies on the heartwood of Cassia garrettina Craib II. Nonanthraquinonic constituents. Chem Pharm Bull. 1979;27:984–9.

    CAS  Google Scholar 

  • Ischiropoulos H, Al-Mehdi AB. Peroxynitrite-mediated oxidative protein modifications. FEBS Lett. 1995;364:279–82.

    Article  PubMed  CAS  Google Scholar 

  • Jayatilake GS, Jayasuriya H, Lee ES, Koonchanok NM, Geahlen RL, Ashendel CL et al. Kinase inhibitors from Polygonum cuspidatum. J Nat Prod. 1993;56:1805–10.

    Article  PubMed  CAS  Google Scholar 

  • Jeandet PR, Bessis M, Sbaghi M, Meunier P. Production of the phytoalexin resveratrol by grapes as a response to Botrytis attack under natural conditions. J Phytopath. 1995;143:135–9.

    Article  CAS  Google Scholar 

  • Kato Y, Kawakishi S, Aoki T, Itakura K, Osawa T. Oxidative modification of tryptophan residues exposed to peroxynitrite. Biochim Biophys Res Commun. 1997;234:82–4.

    Article  CAS  Google Scholar 

  • Khan J, Brennan DM, Bradley N, Gao B, Brukdorfer R, Jacobs M. 3-Nitrotyrosine in the proteins of human plasma determined by an ELISA method. Biochem J. 1998;330:795–801.

    PubMed  CAS  Google Scholar 

  • Kim AR, Park MJ, Lee MK, Sung SH, Park EJ, Kim J et al. Flavonoids of Inula Britanica protect cultured cortical cells from cecrotic cell death induced by glutamate. Free Rad Biol Med. 2002;32:596–604.

    Article  PubMed  CAS  Google Scholar 

  • Kimura Y, Okuda H, Kubo M. Effects of stilbenes isolated from medicinal plants on arachidonate metabolism and degranulation in human polymorphonuclear leukocytes. J Ethnopharmacol. 1995;45:131–9.

    Article  PubMed  CAS  Google Scholar 

  • Klotz LO, Sies H. Defenses against peroxynitrite: selenocompounds and flavonoids. Toxicol Lett. 2003;140:125–32.

    Article  PubMed  CAS  Google Scholar 

  • Kostyuk VA, Kraemer T, Sies H, Schewe T. Myeloperoxidase/nitrite-mediated lipid peroxidation of low-density lipoprotein as modulated by flavonoids. FEBS Lett. 2003;537:146–50.

    Article  PubMed  CAS  Google Scholar 

  • Langcake P, Pryce RJ. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection and injury. Physiol Plant Pathol. 1976;9:77–86.

    Article  CAS  Google Scholar 

  • Lins AP, Ribeiro MN, Gottlieb OR, Gottlieb HE. Gnetins, resveratrol oligomers from Gnetum species. J Nat Prod. 1982;45:754–61.

    Article  CAS  Google Scholar 

  • Lufrano M, Balazy M. Interactions of peroxynitrite and other nitrating substances with human platelets: the role of glutathione and peroxynitrite permeability. Biochem Pharmacol. 2003;65:515–23.

    Article  PubMed  CAS  Google Scholar 

  • Marzocco S, Piacente S, Pizza C, Oleszek W, Stochmal A, Pinto A et al. Inhibition of inducible nitric oxide synthase expression by yuccaol C from Yucca schidigers roezl. Life Sciences. 2004;75:1491–501.

    Article  PubMed  CAS  Google Scholar 

  • Mayer B, Schrammel A, Klatt P, Koesling D, Schmidt K. Peroxynitrite-induced accumulation of cyclic GMP in endothelial cells and stimulated soluble guanylyl cyclase. Dependence on glutathione and possible role of S-nitrosylation. J Biol Chem. 1995;270:17355–60.

    Article  PubMed  CAS  Google Scholar 

  • Messana I, Ferrari F, Cavalcanti MSB, Morace G. An anthraquinone and1 three naphthopyrone derivatives from Cassia pudibunda. Phytochemistry. 1991;30:708–10.

    Article  PubMed  CAS  Google Scholar 

  • Mondoro TH, Shafer BC, Vostal JG. Peroxynitrite-induced tyrosine nitration and phosphorylation in human platelets. Free Rad Biol Med. 1997;22:1055–63.

    Article  PubMed  CAS  Google Scholar 

  • Moro MA, Darley-Usmar VM, Goodwin DA, Read NG, Zamora-Pino R, Feelisch M et al. Paradoxical fate and biological action of peroxynitrite on human platelets. Proc Natl Acad Sci. 1994;91:6702–6.

    Article  PubMed  CAS  Google Scholar 

  • Nowak P, Olas B, Bald E, Glowacki R, Wachowicz B. Peroxynitrite-induced changes of thiol groups in human blood platelets. Platelets. 2003;14:375–9.

    Article  PubMed  CAS  Google Scholar 

  • Ogungbamila FO, Onawunmi GO, Ibewuike JC, Funmilayo KA. Antibacterial constituents of Ficus barteri fruits. Int J Pharmacogn. 1997;35:185–9.

    Article  CAS  Google Scholar 

  • Ohyama M, Tanaka T, Iinuma M, Goto K. Two novel resveratrol trimers, leachianols A and B, from Sophora leachiana. Chem Pharm Bull. 1994;42:2117–20.

    CAS  Google Scholar 

  • Olas B, Wachowicz B. Resveratrol reduces oxidative stress induced by platinum compounds in blood platelets. Gen Physiol Biophys. 2004;23:1–12.

    Google Scholar 

  • Olas B, Wachowicz B, Stochmal A, Oleszek W. Anti-platelet effects of different phenolic compounds from Yucca schidigera Roezl. Bark Platelets. 2002;13:167–73.

    Article  CAS  Google Scholar 

  • Olas B, Wachowicz B, Stochmal A, Oleszek W. Inhibition of oxidative stress in blood platelets by different phenolics from Yucca schidigera Roezl. Bark Nutrition. 2003;19:633–40.

    Article  CAS  Google Scholar 

  • Olas B, Wachowicz B, Bald E, Głowacki R. The protective effects of resveratrol against changes in blood platelet thiols induced by platinum compounds. J Physiol Pharmacol. 2004a;2:467–46.

    Google Scholar 

  • Olas B, Nowak P, Kołodziejczyk J, Wachowicz B. The effects of antioxidants on peroxynitrite-induced changes in platelet proteins. Thromb Res. 2004b;113:399–406.

    Article  PubMed  CAS  Google Scholar 

  • Olas B, Nowak P, Wachowicz B. Resveratrol protects against peroxynitrite-induced thiol oxidation in blood platelets. CMBL. 2004c;9:577–87.

    PubMed  CAS  Google Scholar 

  • Olas B, Wachowicz B, Majsterek I, Blasiak J. Resveratrol may reduce oxidative stress induced by platinum compounds in human plasma, blood platelets and lymphocytes. Anti-Cancer Drugs. 2005a;16:659–65.

    Article  PubMed  CAS  Google Scholar 

  • Olas B, Wachowicz B, Stochmal A, Oleszek W. Inhibition of platelet adhesion and secretion by different phenolics from Yucca schidigera Roezl. Bark Nutr. 2005b;21:199–206.

    Article  CAS  Google Scholar 

  • Olas B, Nowak P, Kolodziejczyk J, Ponczek M, Wachowicz B. Protective effects of resveratrol against oxidative/nitrative modifications of plasma proteins and lipids exposed to peroxynitrite. J Nutr Biochem. 2006a;17:96–102.

    Article  PubMed  CAS  Google Scholar 

  • Olas B, Nowak P, Ponczek M, Wachowicz B. Natural phenolic compound – resveratrol may reduce carbonylation of proteins induced by peroxynitrite in blood platelets. General Physiol Biophys. 2006b;25:215–22.

    CAS  Google Scholar 

  • Olas B, Wachowicz B, Majsterek I, Blasiak J, Stochmal A, Oleszek W. Antioxidant properties of trans 3,3′,5,5′-tetrahydroxy-4–4′methoxystilbene against modification of different biomolecules in human cells treated with platinum compounds. Nutrition. 2006c;22:1202–9.

    Article  PubMed  CAS  Google Scholar 

  • Oleszek W, Sitek M, Stochmal A, Piacente S, Pizza C, Cheeke P. Resveratrol and other phenolics from the bark of Yucca schidigera Roezl. J Agri Food Chem. 2001;49:747–52.

    Article  CAS  Google Scholar 

  • Orsini F, Pelizzoni F, Verotta L, Aburjai T, Rogers CB. Isolation, synthesis and antiplatelet aggregation activity of resveratrol 3-O-β-d-glucopyranoside and related compounds. J Nat Prod. 1997;60:1082–7.

    Article  PubMed  CAS  Google Scholar 

  • Pannala AS, Rice-Evans CA, Halliwell B, Singh S. Inhibition of peroxynitrite-mediated tyrosine nitration by catechin polyphenols. Biochem Biophys Res Commun. 1997;232:164–8.

    Article  PubMed  CAS  Google Scholar 

  • Piacente S, Pizza C, Oleszek W. Saponins and phenolics of Yucca schidigera Roezl: Chemistry and bioactivity. Phytochemistry Rev. 2005;4:177–90.

    Article  CAS  Google Scholar 

  • Powell RG, Bajaj R, McLaughlin JL. Bioactive stilbenes of Scirpus maritimus. J Nat Prod. 1987;50:293–6.

    Article  PubMed  CAS  Google Scholar 

  • Pryor WA, Squadrito GL. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol. 1995;268:L699–L722.

    PubMed  CAS  Google Scholar 

  • Robak J, Gryglewski RJ. Flavonoids are scavengers of superoxide anions. Biochem Pharmacol. 1988;37:837–41.

    Article  PubMed  CAS  Google Scholar 

  • Rotondo S, Rotilio D, Cerletti CH, De Gaetano G. Red wine, aspirin and platelet function. Thromb Haemostas. 1996;76:813–21.

    Google Scholar 

  • Sabetkar M, Low SY, Naseem KM, Bruckdorfer KR. The nitration of proteins in platelets: significance in platelet function. Free Rad Biol Med. 2002;33:728–36.

    Article  PubMed  CAS  Google Scholar 

  • Savouret JF, Quesne M. Resveratrol and cancer: a review. Biomed Pharmacother. 2002;56:84–7.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder P, Zhang H, Klotz LO, Kalyanaraman B, Sies H. (−)-Epicatechin inhibits nitration and dimerization of tyrosine in hydrophilic as well as hydrophobic environments. Biochem Biophys Res Commun. 2001;289:1334–8.

    Article  PubMed  CAS  Google Scholar 

  • Scorza G, Minetti M. One-electron oxidation pathway of thiols by peroxynitrite in biological fluids: bicarbonate and ascorbate promote the formation of albumin disulphide dimmers in human blood plasma. Biochem J. 1998;329:405–13.

    PubMed  CAS  Google Scholar 

  • Shin N-H, Ryu SY, Choi EJ, Kang SH, Chang IM, Min KR et al. Oxyresveratrol as the potent inhibitor of DOPA oxidase activity of mushroom tyrosinase. Biochem Biophys Res Commun. 1998;243:801–3.

    Article  PubMed  CAS  Google Scholar 

  • Sies H. Ebselen, a selenoorganic compound as glutathione peroxidase mimic. Free Rad Biol Med. 1993;14:313–23.

    Article  PubMed  CAS  Google Scholar 

  • Signorelli P, Ghidoni R. Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. J Nutr Biochem. 2005;16:449–66.

    Article  PubMed  CAS  Google Scholar 

  • Stojanovic S, Sprintz H, Brede O. Efficiency and mechanism of the antioxidant action of trans-resveratrol and its analogues in the radical liposome oxidation. Archiv Biochem Biophys. 2001;391:79–89.

    Article  CAS  Google Scholar 

  • van Acker SA, Tromp MN, Haenen GR, van der Vijgh WJ, Bast A. Flavonoids as scavengers of nitric oxide radical. Biochem Biophys Res Commun. 1995;214:755–9.

    Article  PubMed  Google Scholar 

  • Wachowicz B. Adenine nucleotides in thrombocytes of birds. Cell Biochem Funct. 1984;2:167–70.

    Article  PubMed  CAS  Google Scholar 

  • Walkowiak B, Michalak E, Koziołkiewicz W, Cierniewski CS. Rapid photometric method for estimation of platelet count in blood plasma or platelet suspension. Thromb Res. 1989;56:763–6.

    Article  PubMed  CAS  Google Scholar 

  • Wippel R, Rehn M, Gorren ACF, Schmidt K, Mayer B. Interference of the polyphenol epicatechin with the biological chemistry of nitric oxide- and peroxynitrite-mediated reactions. Biochem Pharmacol. 2004;67:1285–95.

    Article  PubMed  CAS  Google Scholar 

  • Zhao CY, Shi YM, Yao SD, Jia ZJ, Fan BT, Wang WF et al. Scavenging effects of natural phenols on oxidizing intermediates of peroxynitrite. Pharmazie. 2003;58:742–9.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants 505/360 from University of Lodz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Olas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olas, B., Wachowicz, B., Nowak, P. et al. Comparative studies of the antioxidant effects of a naturally occurring resveratrol analogue – trans-3,3′,5,5′-tetrahydroxy-4′-methoxystilbene and resveratrol – against oxidation and nitration of biomolecules in blood platelets. Cell Biol Toxicol 24, 331–340 (2008). https://doi.org/10.1007/s10565-007-9045-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-007-9045-7

Keywords

Navigation