Skip to main content
Log in

A Comparison of NO Reduction Over Mn–Cu/ZSM5 and Mn–Cu/MWCNTs Catalysts Assisted by Plasma at Ambient Temperature

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Manganese–copper bimetal oxide catalysts supported on ZSM5 and acid-treated multi-walled carbon nanotubes (MWCNTs) were produced by incipient wetness impregnation for selective catalytic reduction of NO with dielectric barrier discharge plasma. Plasma can activate molecules even at ambient temperature, generating active oxygen species such as O, O3, and HO2 radicals, which can oxidize NO to NO2 effectively. The SCR activity of Mn–Cu/MWCNTs was studied and compared to that of the Mn–Cu/ZSM5. The obtained samples were characterized by XRD, SEM, TEM, ICP, H2-TPR, Raman spectroscopy, and XPS. The results show that MnCu/MWCNTs catalyst possesses NO removal activity superior to that of the MnCu/ZSM5 catalyst. MWCNTs-based catalyst attains NO removal efficiency of 88% at 480 J/L, while the ZSM5-supported catalyst achieves NO removal efficiency of 82% at the same energy density. The oxygen content increased from 3.33 to 19.07% on the nanotube surface after introducing Mn and Cu, which almost remained unchanged on ZSM5. The oxygen-containing functionalities are important for NOx adsorption and removal. Moreover, the characterization revealed that CuO is the main phase of copper oxide, but copper dispersion decreases on MnCu/ZSM5 surface because of the formation of copper dimer species. The manganese is well-dispersed on the catalysts, MnO2 and Mn2O3 contents of MnCu/MWCNTs are larger than that of MnCu/ZSM5, MnO2 is the predominant phase of manganese oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Wang QZ, Zhuang GS, Huang K, Liu TN, Deng CR, Xu J, Lin YF, Guo ZG, Chen Y, Fu QY, Fu JSS, Chen JK (2015) Atmos Environ 120:76–88

    Article  CAS  Google Scholar 

  2. Wang H, Tan SC, Wang Y, Jiang C, Shi GY, Zhang MX, Che HZ (2014) Atmos Environ 89:807–815

    Article  CAS  Google Scholar 

  3. Yuan EH, Han WL, Zhang GD, Zhao K, Mo ZL, Lu GX, Tang ZC (2016) Catal Surv Asia 20:41–52

    Article  CAS  Google Scholar 

  4. Mok YS, Ravi V, Kang HC, Rajanikanth BS (2003) IEEE Trans Plasma Sci 31:157–165

    Article  CAS  Google Scholar 

  5. Wang H, Li XX, Chen M, Zheng XM (2013) Catal Today 211:66–71

    Article  CAS  Google Scholar 

  6. Ettireddy PR, Ettireddy N, Mamedov S, Boolchand P, Smirniotis PG (2007) Appl Catal B 76:123–134

    Article  CAS  Google Scholar 

  7. Shi C, Zhang ZS, Crocker M, Xu L, Wang CY, Au C, Zhu AM (2013) Catal Today 211:96–103

    Article  CAS  Google Scholar 

  8. He XX, Meng M, He JJ, Zou ZQ, Li XG, Li ZQ, Jiang Z (2010) Catal Commun 12:165–168

    Article  CAS  Google Scholar 

  9. Chirumamilla VR, Hoeben WFLM, Beckers FJCM, Huiskamp T, Van Heesch EJM, Pemen AJM (2016) Plasma Chem Plasma Process 36:487–510

    Article  CAS  Google Scholar 

  10. Indarto A (2016) Plasma Sources Sci Technol 25:025002

    Article  Google Scholar 

  11. Yu Q, Wang H, Liu T, Xiao L, Jiang X, Zheng X (2012) Environ Sci Technol 46:2337–2344

    Article  CAS  Google Scholar 

  12. Nagata M, Hanaki Y, Ikeda A, Sekine Y (2014) Plasma Chem Plasma Process 34:1303–1315

    Article  CAS  Google Scholar 

  13. Pan H, Qiang Y (2014) Plasma Chem Plasma Process 34:811–824

    Article  CAS  Google Scholar 

  14. Su YX, Fan BX, Wang LS, Liu YF, Huang BC, Fu ML, Chen LM, Ye DQ (2013) Catal Today 201:115–121

    Article  CAS  Google Scholar 

  15. Zamudio MA, Russo N, Fino D (2011) Ind Eng Chem Res 50:6668–6672

    Article  CAS  Google Scholar 

  16. Kim YJ, Lee JK, Min KM, Hong SB, Nam IS, Cho BK (2014) J Catal 311:447–457

    Article  CAS  Google Scholar 

  17. Franco RM, Moliner M, Corma A (2014) J Catal 319:36–43

    Article  Google Scholar 

  18. Jiang LL, Wang YL, Liu X, Cao YN, Wei KM (2013) Chin J Catal 34:2271–2276

    Article  CAS  Google Scholar 

  19. Chen CL, Zhang J, Peng F, Su DS (2013) Mater Res Bull 48:3218–3222

    Article  CAS  Google Scholar 

  20. Li Q, Yang HS, Qiu FM, Zhang XB (2011) J Hazard Mater 192:915–921

    Article  CAS  Google Scholar 

  21. Felten A, Bittencourt C, Pireaux JJ (2005) J Appl Phys 98:074308

    Article  Google Scholar 

  22. Park OK, Kim WY, Kim SM, You NH, Jeong YJ, Lee HS, Ku BC (2015) Mater Lett 156:17–20

    Article  CAS  Google Scholar 

  23. Manley TC (1943) Trans Electrochem Soc 84:83–96

    Article  Google Scholar 

  24. Kim Y, Kang WS, Park JM, Hong SH, Song YH, Kim SJ (2004) IEEE Trans Plasma Sci 32:18–24

    Article  CAS  Google Scholar 

  25. Wang T, Sun B, Xiao H (2013) Plasma Chem Plasma Process 33:307–322

    Article  CAS  Google Scholar 

  26. Zhu A, Sun Q, Niu J, Xu Y, Song Z (2005) Plasma Chem Plasma Process 25:371–386

    Article  CAS  Google Scholar 

  27. Wang T, Sun BM, Xiao HP (2013) Environ Technol 34:2709–2716

    Article  CAS  Google Scholar 

  28. Nasonova A, Pham HC, Kim DJ, Kim KS (2010) Chem Eng J 156:557–561

    Article  CAS  Google Scholar 

  29. Wang T, Sun B, Xiao H, Zeng J, Duan E, Xin J, Li C (2012) Plasma Chem Plasma Process 32:1189–1201

    Article  Google Scholar 

  30. Wang L, He H, Zhang C, Wang Y, Zhang B (2016) Chem Eng J 288:406–413

    Article  CAS  Google Scholar 

  31. Wang L, Zhang C, He H, Liu F, Wang C (2016) J Phys Chem C 120:6136–6144

    Article  CAS  Google Scholar 

  32. Wijayanti K, Andonova S, Kumar A, Li J, Kamasamudram K, Currier NW, Yezerets A, Olsson L (2015) Appl Catal B 166–167:568–579

    Article  Google Scholar 

  33. Joshi SY, Kumar A, Luo J, Kamasamudram K, Currier NW, Yezerets A (2015) Appl Catal B 165:27–35

    Article  CAS  Google Scholar 

  34. Ruggeri MP, Nova I, Tronconi E, Pihl JA, Toops TJ, Partridge WP (2015) Appl Catal B 166–167:181–192

    Article  Google Scholar 

  35. Koebel M, Madia G, Elsener M (2002) Catal Today 73:239–247

    Article  CAS  Google Scholar 

  36. Wang SJ, Zhu WX, Liao DW, Ng CF, Au CT (2004) Catal Today 93–95:711–714

    Article  Google Scholar 

  37. Su DS, Perathoner S, Centi G (2013) Chem Rev 113:5782–5816

    Article  CAS  Google Scholar 

  38. Beyer H, Köhler K (2010) Appl Catal B 96:110–116

    Article  CAS  Google Scholar 

  39. Beyer H, Chatziapostolou K, Köhler K (2009) Top Catal 52:1752–1756

    Article  CAS  Google Scholar 

  40. Bubert H, Brandl W, Kittel S, Marginean G, Toma D (2002) Anal Bioanal Chem 374:1237–1241

    Article  CAS  Google Scholar 

  41. Tang XL, Hao JM, Xu WG, Li JH (2006) Chin J Catal 27:843–848

    Article  CAS  Google Scholar 

  42. Li L, Wang LS, Pan SW, Wei ZL, Huang BC (2013) Chin J Catal 34:1087–1097

    Article  Google Scholar 

  43. Li Q, Yang HS, Nie AM, Fan XY, Zhang XB (2011) Catal Lett 141:1237–1242

    Article  CAS  Google Scholar 

  44. Tong L, Li Z, Zhu T, Xu H, Liu Z (2008) J Phys Chem C 112:7119–7123

    Article  CAS  Google Scholar 

  45. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Phys Rep 409:47–99

    Article  Google Scholar 

  46. Gamarra D, Munuera G, Hungrıa AB, Fernandez-Garcıa M, Conesa JC, Midgley PA, Wang XQ, Hanson JC, Rodrıguez JA, Martınez-Arias A (2007) J Phys Chem C 111:11026–11038

    Article  CAS  Google Scholar 

  47. McBride JR, Hass KC, Poindexter BD, Weber WH (1994) J Appl Phys 76:2435–2441

    Article  CAS  Google Scholar 

  48. Chen JF, Zhan YY, Zhu JJ, Chen CQ, Lin XY, Zheng Q (2010) Appl Catal A 377:121–127

    Article  CAS  Google Scholar 

  49. Ramana CV, Massot M, Julien CM (2005) Surf Interface Anal 37:412–416

    Article  CAS  Google Scholar 

  50. Nguyen NH, Wu HY, Bai H (2015) Chem Eng J 269:60–66

    Article  CAS  Google Scholar 

  51. Duan KJ, Chen BH, Zhu TL, Liu ZM (2015) Appl Catal B 176–177:618–626

    Article  Google Scholar 

  52. Fan XY, Qiu FM, Yang HS, Tian W, Hou TF, Zhang XB (2011) Catal Commun 12:1298–1301

    Article  CAS  Google Scholar 

  53. Putluru SSR, Schill L, Jensen AD, Siret B, Tabaries F, Fehrmann R (2015) Appl Catal B 165:628–635

    Article  CAS  Google Scholar 

  54. Yashnik S, Ismagilov Z (2015) Appl Catal B 170–171:241–254

    Article  Google Scholar 

  55. Aguila G, Gracia F, Corte´s J, Araya P (2008) Appl Catal B 77:325–338

    Article  CAS  Google Scholar 

  56. Da Costa P, Moden B, Meitzner G, Lee D, Iglesia E (2002) Phys Chem Chem Phys 4:4590–4601

    Article  CAS  Google Scholar 

  57. Hoang DL, Dang TTH, Engeldinger J, Schneider M, Radnik J, Richter M, Martin A (2011) J Solid State Chem 184:1915–1923

    Article  CAS  Google Scholar 

  58. Tian W, Fan XY, Yang HS, Zhang XB (2010) J Hazard Mater 177:887–891

    Article  CAS  Google Scholar 

  59. Tang XF, Li YG, Huang XM, Xu YD, Zhu HQ, Wang JG, Shen WJ (2006) Appl Catal B 62:265–273

    Article  CAS  Google Scholar 

  60. Cimino S, Lisi L, Tortorelli M (2016) Chem Eng J 283:223–230

    Article  CAS  Google Scholar 

  61. Osorio VP, Flores GNA, Navarro RM, Fierro JLG, Campos CH, Reyes P (2016) Catal Today 259:27–38

    Article  Google Scholar 

  62. Manogil JG, López AB, García AG (2014) Appl Catal B 152–153:99–107

    Article  Google Scholar 

  63. Liu L, Yao Z, Liu B, Dong L (2010) J Catal 275:45–60

    Article  CAS  Google Scholar 

  64. Oliveira MLM, Silva CM, Tost RM, Farias TL, Lopez AJ, Castellon ER (2009) Appl Catal B 88:420–429

    Article  Google Scholar 

  65. Tost RM, Oliveira MLM, Quesada DE, Jimenez JJ, Lopes AJ, Castellon ER (2008) Chemosphere 72:608–615

    Article  Google Scholar 

  66. Bin F, Wei XL, Li B, Hui KS (2015) Appl Catal B 162:282–288

    Article  CAS  Google Scholar 

  67. Andonova S, Vovk E, Sjöblom J, Ozensoy E, Olsson L (2014) Appl Catal B 147:251–263

    Article  CAS  Google Scholar 

  68. Wan YP, Zhao WR, Tang Y, Li L, Wang HJ, Cui YL, Gu JL, Li YS, Shi JL (2014) Appl Catal B 148–149:114–122

    Article  Google Scholar 

  69. Li J, Chang H, Ma L, Hao J, Yang RT (2011) Catal Today 175:147–156

    Article  CAS  Google Scholar 

  70. Guo L, Xian H, Li QF, Chen D, Tan YS, Zhang J, Zheng LR, Li XG (2013) J Hazard Mater 260:543–551

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Fundamental Research Funds for the Central Universities (JB2015RCY06) and Key Projects in the National Science & Technology of China (2015BAA05B02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Wang or Yonghong Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zhang, X., Liu, H. et al. A Comparison of NO Reduction Over Mn–Cu/ZSM5 and Mn–Cu/MWCNTs Catalysts Assisted by Plasma at Ambient Temperature. Catal Surv Asia 21, 94–102 (2017). https://doi.org/10.1007/s10563-017-9228-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-017-9228-z

Keywords

Navigation