Skip to main content
Log in

A Study of the Zn-based Desulfurization Sorbents for H2S Removal in the IGCC

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

The various Zn-based sorbents were prepared by physical mixing method and co-precipitation method. The sulfur removing capacity and regeneration properties of the various sorbents were measured in fixed bed reactor at middle temperature condition (sulfidation process 480 °C, regeneration process 580 °C). The sulfur removing capacities of the sorbents were depended on the physical properties such as pore volume, surface area and particle size. The Zn-based sorbents prepared by co-precipitation method were higher pore volume, surface area and smaller particle size resulting in the higher capacities than those prepared by the physical mixing method. To improve the regeneration properties of the sorbents, the various promoters such as cobalt, iron, nickel and cerium were added to the sorbents. The promoters have various roles with the kind of promoter. The roles of promoters could be explained by heat effect and catalytic effect of the promoters. Also, the alloyed structure like spinel structure (ZnTi2O4) has been proposed to explain the superior regeneration properties compared to the single ZnO structure. In addition, the simultaneous removals of the H2S and NH3 over the Zn–Al-based sorbents were tested at 650 °C. So, the new process for simultaneous removal using the developed Zn-based sorbents could be proposed. The role of promoters, effect of hydrogen potential pressure and the deactivation mechanism including the sulfidation of metal oxide to metal sulfide were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Kwon KC, Park YK, Gangwal SK, Das K (2003) Sep Sci Technol 12:3289

    Article  Google Scholar 

  2. Han W, Jin H, Xu W (2007) Energy 32:1334

    Article  CAS  Google Scholar 

  3. Bu X, Ying Y, Ji X, Zhang C, Peng W (2007) Fuel Process Technol 88:143

    Article  CAS  Google Scholar 

  4. Haupt G, Zimmermann G, Baumann HR, Ullrich N, Pruschek R, Oeljeklaus G (1997) Gasification technologies conference, Sanfrancisco

  5. Shilling NZ, Lee DT (2003) PowerGen Asia

  6. Gangwal SK, Turk B, Coker D, Howe G, Gupta RP, Kamarthi R, Leininger T, Jain S (2004) 21st annual international Pittsburgh coal conference, Pittsburgh

  7. Mandal BP, Bandyopadhyay BB (2005) Chem Eng Sci 60:6438

    Article  CAS  Google Scholar 

  8. Rutkowski MD, Klett MG, Zaharchuk R (1997) Parsons Power Group Inc. 2657 Morgantown Road, Reading, PA, 19607

  9. Wakker JP (1992) PhD. Thesis, TU Delft, Netherlands

  10. Thambimuthu K (1993) IEA Coal Research, London

  11. Soerawidjaja TH (1985) PhD. Thesis, TU Delft, Netherlands

  12. Jang HT, Kim SB, Doh DS (2003) Korean J Chem Eng 20(1):116

    Article  CAS  Google Scholar 

  13. Lee HS, Kim JY, Yu JK, Kil IS, Km DH, Lee TJ, Rhee YW (2005) Korean J Chem Eng 22(6):889

    Article  CAS  Google Scholar 

  14. Lee HS, Kang MP, Song YS, Lee TJ, Rhee YW (2001) Korean J Chem Eng 18(5):635

    Article  CAS  Google Scholar 

  15. Song YK, Lee KB, Lee HS, Rhee YW (2000) Korean J Chem Eng 17(6):691

    Article  CAS  Google Scholar 

  16. Konttinen JT, Zevenhoven CAP, Hupa MM (1997) Ind Eng Chem Res 36:2340

    Article  CAS  Google Scholar 

  17. Woudstra Th, Woudstra N (1995) J Inst Energy 68:157

    CAS  Google Scholar 

  18. Gibson JB, Harrison DP (1980) Ind Eng Chem Prod Res Dev 19:231

    Article  CAS  Google Scholar 

  19. Gangwal SK, Stogner JM, Harkins SM (1989) Environ Prog 8:265

    Article  CAS  Google Scholar 

  20. Lew S, Jothimurugesan K, Flytzani-Stephanopoulos M (1989) Ind Eng Chem Res 28:535

    Article  CAS  Google Scholar 

  21. Bu X, Ying Y, Zhang C, Peng W (2008) Powder Technol 180:253

    Article  CAS  Google Scholar 

  22. Yumura M, Furimsky E (1985) Ind Eng Chem Process Des Dev 24:1165

    Article  CAS  Google Scholar 

  23. Kobayashi M, Flyzani-Stephanopoulos M (2002) Ind Eng Chem Res 41:3115

    Article  CAS  Google Scholar 

  24. Lee YS, Kim HT, Yoo HO (1995) Ind Eng Chem Res 34:1181

    Article  CAS  Google Scholar 

  25. Wakker JP, Gerritsen AW, Jacob A, Moulijn JA (1993) Ind Eng Chem Res 32:139

    Article  CAS  Google Scholar 

  26. Lee YS, Kim DS, Kim KH, Kim HT, Yoo KO (1996) Korean J Chem Eng 13(4):427

    Article  CAS  Google Scholar 

  27. Yi CK, Jo SH, Lee BH, Lee SY, Son JE, Jin GT (2001) Korean J Chem Eng 18(6):1005

    Article  CAS  Google Scholar 

  28. Lee TJ, Cho IH, Park NK (2009) Korean J Chem Eng 26(2):582

    Article  CAS  Google Scholar 

  29. Jothimurugesan K, Gangwal SK (1998) Ind Eng Chem Res 37:1929

    Article  CAS  Google Scholar 

  30. Siriwardane RV, Grimm U, Poston J, Monaco S (1994) Proceedings of the coal-fired power systems 94—advances in IGCC and PFBC review meeting

  31. Siriwardane RV, Poston JA, Hammerbeck K (1997) Proceedings of the advanced coal-based power and environmental systems 97 conference, Pittsburgh

  32. Ayala RE, Chuck T, Gal E, Gupta RP, Cicero DC (1994) Proceedings of the coal-powered systems 94—advances in IGCC and PFBC review meeting

  33. Ayala RE, Feitelberg AS, Furman AH (1995) Proceedings of twelfth annual international Pittsburgh coal conference, Pittsburgh

  34. Sanchez-Hervas JM, Otero J, Ruiz E (2005) Chem Eng Sci 60:2977

    Article  CAS  Google Scholar 

  35. Gupta RP, Gangwal SK, Cicero DC (1995) Proceedings of the advanced coal-powered systems ‘95 review meeting

  36. Konttinen J, Salo K, Ghazanfari R, Feher G, Lehtovaara A, Mojtahedi W, Dorchak TP (1995) Proceedings of the advanced coal-powered systems ‘95 review meeting

  37. Lehtovaara A, Konttinen J, Salo K, Feher G, Ghazanfari R, Mojtahedi W, Dorchak TP (1995) Proceedings of twelfth annual international Pittsburgh coal conference, Pittsburgh

  38. Greenwood GJ, Khare GP, Kubicek DH, Delzer GA, Kinsinger DL (1995) Proceedings of the coal-fired power system 95—advances in IGCC and PFBC review meeting

  39. Gangwal SK, Gupta RP, Cicero DC (1995) Proceedings of the advanced coal-fired power system ‘95 review meeting

  40. Khare GP, Delzer GA, Kubicek DH, Greenwork GJ (1995) Environ Prog 146:146

    Article  Google Scholar 

  41. Ayala RE, Venkataramani VS, Abbasian J, Hill Ah, Cicero DC (1995) Proceedings of the advanced coal-powered systems ‘95 review meeting

  42. Kang SC, Jun HK, Lee TJ, Ryu SO, Kim JC (2002) Hwahak Konghak 40:289

    CAS  Google Scholar 

  43. Jun HK, Jung SY, Lee TJ, Kim JC (2004) Korean J Chem Eng 21:425

    Article  CAS  Google Scholar 

  44. Jun HK, Lee TJ, Ryu SO, Kim JC (2001) Ind Eng Chem Res 40:3547

    Article  CAS  Google Scholar 

  45. Jun HK, Lee TJ, Kim JC (2002) Ind Eng Chem Res 41:4733

    Article  CAS  Google Scholar 

  46. Jun HK, Lee TJ, Ryu SO, Yi CK, Ryu CK, Kim JC (2004) Energy Fuel 18:41

    Article  CAS  Google Scholar 

  47. Jun HK, Jung SY, Lee TJ, Ryu CK, Kim JC (2003) Catal Today 87:3

    Article  CAS  Google Scholar 

  48. Jung SY, Lee SJ, Lee SC, Park JJ, Jun HK, Lee HJ, Ryu Ck, Kim JC (2008) Sep Purif Technol 63:297

    Article  CAS  Google Scholar 

  49. Jung SY, Lee SJ, Lee TJ, Ryu CK, Kim JC (2006) Catal Today 111:217

    Article  CAS  Google Scholar 

  50. Jung SY, Jun HK, Lee SJ, Lee TJ, Ryu CK, Kim JC (2005) Environ Sci Technol 39:9324

    Article  CAS  Google Scholar 

  51. Jung SY, Lee SJ, Park JJ, Lee SC, Jun HK, Lee TJ, Ryu CK, Kim JC (2008) Ind Eng Chem Res 4:4909

    Article  Google Scholar 

  52. Jung SY, Park JJ, Lee SJ, Jun HK, Lee SC, Kim JC (2009) Korean J Chem Eng 27(5):1428

    Article  Google Scholar 

  53. Kim KS, Park NK (2010) Korean J Chem Eng 27(6):1715

    Article  CAS  Google Scholar 

  54. Lee TJ, Kwon WT, Chang WC, Kim JC (1997) Korean J Chem Eng 14(6):513

    Article  CAS  Google Scholar 

  55. Kaspar J, Fornasiero P, Graziani M (1999) Catal Today 50:285

    Article  CAS  Google Scholar 

  56. Trovarelli A, Leitenburg C, Boaro DM, Dolcetti G (1999) Catal Today 50:353

    Article  CAS  Google Scholar 

  57. Wang S, Wang W, Zuo J, Qian Y (2001) Mater Chem Phys 68:246

    Article  CAS  Google Scholar 

  58. Thormahlen P, Fridell E, Cruise N, Skoglundh M, Palmqvist A (2001) Appl Catal 31:1

    Article  CAS  Google Scholar 

  59. Sutasinee KN, Koji I, Takaaki K, Aika KI (2004) Water Res 38:778

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support by grants from Korea CCS R&D Center, funded by the Ministry of Education, Science and Technology of Korean government and Energy Efficiency and Resources R&D program (2011201020004A) under the Ministry of Knowledge Economy, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Chang Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, S.Y., Lee, S.C., Jun, H.K. et al. A Study of the Zn-based Desulfurization Sorbents for H2S Removal in the IGCC. Catal Surv Asia 17, 85–102 (2013). https://doi.org/10.1007/s10563-013-9154-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-013-9154-7

Keywords

Navigation