Skip to main content

Advertisement

Log in

Structured Catalysts Prepared by Electroless Plating Technique onto a Metal Substrate, for a Wall-Type Hydrogen Production System

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

This article reviews our works on the structured catalysts for a wall-type hydrogen production system including methanol steam reforming (MSR), CO shift reaction (CO SR) and methanol decomposition (MD). The structured catalysts were copper-based, palladium-based and nickel-based catalysts. Such a series of structured catalysts were prepared by the electroless plating technique that is a novel method for preparing a structured type catalyst onto a metal-substrate. The copper-based catalyst exhibited high performance for MSR and CO SR, the palladium-based catalyst high for MSR, and the nickel-based catalyst high for MD. The catalytic properties of these catalysts were affected by the difference of the plating condition and the pretreatment condition prior to the reaction. In the copper-based catalyst, the reforming and shift activities were enhanced by the oxidation treatment. One of the factors of such activity enhancement by the oxidation was thought to be in close proximity existence of copper and zinc atoms. A lot of monodentate-type formate species having high reactivity was formed on the oxidized catalyst, which would be correlated to the activity enhancement. In the palladium-based catalyst, the reforming activity was improved by the continuous reduction treatment followed by the oxidation. Such continuous pretreatment formed the PdZn alloy species thought to be a reforming site in the surface layer. The decomposition performance of the nickel-based catalyst depended on the ratio of the crystallite size of nickel particles to that of aluminum particles. The electronic influence of zinc and phosphorous components incorporated in the plated layer contributed to the improvement of the selectivity of product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fukuhara C, Igarashi A (1993) Kagaku Kogaku Ronbunshu 19:295

    Article  CAS  Google Scholar 

  2. Fukuhara C, Igarashi A (1995) Sekiyu Gakkaishi 38:88

    Article  CAS  Google Scholar 

  3. Fukuhara C, Igarashi A (2005) Chem Eng Sci 60:6824

    Article  CAS  Google Scholar 

  4. Wild PJ, Verhaak MJFM (2000) Catal Today 60:3

    Article  Google Scholar 

  5. Groppi G, Airoldi G, Cristiani C, Tronconi E (2000) Catal Today 60:57

    Article  CAS  Google Scholar 

  6. Vergunst T, Kaptejin F, Moulijin JA (2001) Appl Catal A Gen 213:179

    Article  CAS  Google Scholar 

  7. Lindström B, Pettersson LJ (2002) J Power Sources 106:264

    Article  Google Scholar 

  8. Men Y, Gnaser H, Zapf R, Hessel V, Ziegler C (2004) Catal Commun 5:671

    Article  CAS  Google Scholar 

  9. Reuse P, Renken A, Santo KH, Gorke O, Schubert K (2004) Chem Eng J 101:133

    Article  CAS  Google Scholar 

  10. Pennemann H, Hessel V, Kolb G, Lowe H, Zapf R (2008) Chem Eng J 135S:S66

    Article  Google Scholar 

  11. Arendt E, Maione A, Klisinska A, Sanz O, Montes M, Suarez S, Blanco J, Ruiz P (2008) Appl Catal A Gen 339:1

    Article  CAS  Google Scholar 

  12. Ciambelli P, Palma V, Palo E (2010) Catal Today 155:92

    Article  CAS  Google Scholar 

  13. Liguras DK, Goundani K, Verykios XE (2004) J Power Sources 130:30

    Article  CAS  Google Scholar 

  14. Fukuhara C, Kawamorita K (2009) Appl Catal A Gen 370:42

    Article  CAS  Google Scholar 

  15. Guo Y, Zhou L, Kameyama H (2011) Int J Hydrogen Energy 36:5321

    Article  CAS  Google Scholar 

  16. Zhou L, Guo Y, Yagi M, Sakurai M, Kameyama H (2009) Int J Hydrogen Energy 34:844

    Article  CAS  Google Scholar 

  17. Zhou L, Guo Y, Zhang Q, Tran TP, Sakurai M, Kameyama H (2008) J Chem Eng Jpn 41:90

    Article  CAS  Google Scholar 

  18. Chang HF, Abu SM, Hsu WS, Lin WH (1994) J Mol Catal 94:233

    Article  CAS  Google Scholar 

  19. Chang HF, Abu SM, Hsu WS, Lin WH (1996) J Mol Catal 109:249

    Article  CAS  Google Scholar 

  20. Lin WH, Hwang CY, Chang HF (1997) Appl Catal A Gen 162:71

    Article  CAS  Google Scholar 

  21. Chang HF, Lin WH (1998) Korean J Chem Eng 15:559

    Article  CAS  Google Scholar 

  22. Park BJ, Park SJ (1999) J Mater Sci Lett 18:1607

    Article  CAS  Google Scholar 

  23. Park SJ, Shin JS (2004) J Porous Mater 11:15

    Article  Google Scholar 

  24. Liu L, Hong L (2011) AIChE J 57:3143

    Article  CAS  Google Scholar 

  25. Fukuhara C, Sasahara N, Igarashi A (1994) J Jpn Petrol Inst 37:173

    Article  CAS  Google Scholar 

  26. Fukuhara C, Igarashi A (2002) J Chem Eng Jpn 35:1322

    Article  CAS  Google Scholar 

  27. Fukuhara C, Igarashi A (2003) J Chem Eng Jpn 36:730

    Article  CAS  Google Scholar 

  28. Fukuhara C, Igarashi A (2004) J Chem Eng Jpn 37:23

    Article  CAS  Google Scholar 

  29. Fukuhara C, Igarashi A (2004) J Chem Eng Jpn 37:415

    Article  CAS  Google Scholar 

  30. Fukuhara C, Ohkura H, Kamata Y, Murakami Y, Igarashi A (2004) Appl Catal A Gen 273:125

    Article  CAS  Google Scholar 

  31. Fukuhara C, Ohkura H, Gonohe K, Igarashi A (2005) Appl Catal A Gen 279:195

    Article  CAS  Google Scholar 

  32. Fukuhara C, Kamata Y, Igarashi A (2005) Appl Catal A Gen 296:100

    Article  CAS  Google Scholar 

  33. Fukuhara C, Kamata Y, Igarashi A (2007) Appl Catal A Gen 330:108

    Article  CAS  Google Scholar 

  34. Fukuhara C, Ohkura H (2008) Appl Catal A Gen 344:158

    Article  CAS  Google Scholar 

  35. Kanbe T (1986) Muddenkai Mekki (in Japanese). Maki-shoten, Tokyo

    Google Scholar 

  36. Hayashi T, Matsuoka M, Nawafune H (1994) Muddenkai Mekki––Kiso to Ohyo (in Japanese). Nikkan Kogo Shinbun-sha, Tokyo

    Google Scholar 

  37. Sha W (2011) Electroless Copper and Nickel–Phosphorus Plating. Woodhead Publishing Ltd, Cambridge

    Book  Google Scholar 

  38. Takahashi K, Kobayashi H, Takezawa N (1985) Chem Lett 14:759

    Article  Google Scholar 

  39. Takahashi K, Takezawa N, Kobayashi H (1982) Appl Catal 2:383

    Google Scholar 

  40. Takezawa N (1995) Catalysts Catal 37:320

    Google Scholar 

  41. Jang CJ, Trimm DL, Wainwright MS, Cant NW (1993) Appl Catal 97:145

    Article  Google Scholar 

  42. Lindström B, Pettersson LJ (2001) Int J Hydrogen Energy 26:923

    Article  Google Scholar 

  43. Pfeifer P, Schubert K, Emig G (2005) Appl Catal A Gen 286:175

    Article  CAS  Google Scholar 

  44. Frank B, Jentoft FC, Soerijanto H, Krohnert J, Schlogl R, Schomacker R (2007) J Catal 246:177

    Article  CAS  Google Scholar 

  45. Tsai MC, Wang JH, Shen CC, Yeh CT (2011) J Catal 279:241

    Article  CAS  Google Scholar 

  46. Yang HM, Chan MK (2011) Catal Commun 12:1389

    Article  CAS  Google Scholar 

  47. Kameoka S, Tanabe T, Tsai AP (2004) Catal Today 93:23

    Article  Google Scholar 

  48. Tanabe T, Kameoka S, Tsai AP (2006) Catal Today 111:153

    Article  CAS  Google Scholar 

  49. Tanabe T, Kameoka S, Tsai AP (2010) Appl Catal A Gen 384:241

    Article  CAS  Google Scholar 

  50. Herwijnen TV, Jong WA (1980) J Catal 63:83

    Article  Google Scholar 

  51. Herwijnen TV, Guczalski RT, Jong WA (1980) J Catal 63:94

    Article  Google Scholar 

  52. Campbell CT, Daube KA (1987) J Catal 104:109

    Article  CAS  Google Scholar 

  53. Nakamoto K (1987) Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd edn. Wiley–Interscience, New York, p 230

    Google Scholar 

  54. Shido T, Asakura K, Iwasawa Y (1990) J Catal 122:55

    Article  CAS  Google Scholar 

  55. Shido T, Iwasawa Y (1993) J Catal 141:71

    Article  CAS  Google Scholar 

  56. Bandara A, Kubota J, Wada A, Domen K, Hirose C (1996) J Phys Chem 100:14962

    Article  CAS  Google Scholar 

  57. Nakamura J, Kushida Y, Choi Y, Uchijima T (1997) J Vac Sci Technol A15:1568

    Google Scholar 

  58. Nakamura I, Nakano H, Fujitani T, Uchijima T, Nakamura J (1998) Surf Sci 400:387

    Article  CAS  Google Scholar 

  59. Nakamura J (1998) Shokubai (in Japanese) 40:250

    CAS  Google Scholar 

  60. Mckee DW (1968) Trans Faraday Soc 64:2200

    Article  CAS  Google Scholar 

  61. Sexton BA (1981) Surf Sci 102:271

    Article  CAS  Google Scholar 

  62. Akiyoshi M, Hattori H, Tanabe K (1987) J Jpn Petrol Inst 30:156

    Article  CAS  Google Scholar 

  63. Fukuhara C, Sekiguchi S, Muto H, Igarashi A (1995) Kagaku Kogaku Ronbunshu 17:1002

    Article  Google Scholar 

  64. Iwasa N, Masuda S, Ogawa N, Takezawa N (1995) Appl Catal A Gen 125:145

    Article  CAS  Google Scholar 

  65. Iwasa N, Ogawa N, Masuda S, Takezawa N (1998) Bull Chem Soc Jpn 71:1451

    Article  CAS  Google Scholar 

  66. Iwasa N, Mayanagi T, Nomura W, Arai M, Takezawa N (2003) Appl Catal A Gen 248:153

    Article  CAS  Google Scholar 

  67. Iwasa N, Takizawa M, Arai M (2005) Appl Catal A Gen 283:255

    Article  CAS  Google Scholar 

  68. Chin YH, Dagle R, Hu J, Dohnalkova AC, Wang Y (2002) Catal Today 77:79

    Article  CAS  Google Scholar 

  69. Chin YH, Wang Y, Dagle RA, Li XS (2003) Process Technol 83:193

    Article  CAS  Google Scholar 

  70. Liu S, Takahashi K, Ayabe M (2003) Catal Today 87:247

    Article  CAS  Google Scholar 

  71. Liu S, Takahashi K, Uematsu K, Ayabe M (2004) Appl Catal A Gen 277:265

    Article  CAS  Google Scholar 

  72. Liu S, Takahashi K, Uematsu K, Ayabe M (2005) Appl Catal A Gen 283:125

    Article  CAS  Google Scholar 

  73. Kameoka S, Kimura T, Tsai AP (2009) Catal Lett 131:219

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choji Fukuhara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuhara, C., Igarashi, A. Structured Catalysts Prepared by Electroless Plating Technique onto a Metal Substrate, for a Wall-Type Hydrogen Production System. Catal Surv Asia 16, 62–74 (2012). https://doi.org/10.1007/s10563-012-9134-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-012-9134-3

Keywords

Navigation