Skip to main content
Log in

A DFT Study of Methanol Synthesis from CO2 Hydrogenation on the Pd(111) Surface

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

During the process of catalytic conversion of CO2 to valuable chemical products, Pd used as catalysts or modifiers shows promising effect on CO2 hydrogenation. The mechanism of methanol synthesis from the hydrogenation of CO2 on the Pd(111) surface was studied using density functional theory calculations in present work. On the Pd(111) surface, CO2 firstly hydrogenates to HCOO or COOH, each of which then reacts with the surface H atom to form HCOOH. Next, HCOOH dissociates to OH and HCO that will be consecutively hydrogenated to H2CO, H3CO and H3COH. CO is the main side product of CO2 hydrogenation on the Pd(111) surface with an activation barrier of 1.09 eV. The hydrogenation of HCO species with the surface H atom to form H2CO plays as the rate determining step for CO2 hydrogenation to methanol with the barrier of 0.91 eV. Our calculated results are favorable for the understanding of the mechanism of CO2 conversion on not only Pd-based catalysts but also Pd modified catalysts.

Graphical Abstract

The mechanism of methanol synthesis from the hydrogenation of CO2 on the Pd(111) surface was studied using density functional theory calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu X-M, Lu GQ, Yan Z-F, Beltramini J (2003) Ind Eng Chem Res 42:6518

    Article  CAS  Google Scholar 

  2. Palo DR, Dagle RA, Holladay JD (2007) Chem Rev 107:3992

    Article  CAS  PubMed  Google Scholar 

  3. Centi G, Perathoner S (2009) Catal Today 148:191

    Article  CAS  Google Scholar 

  4. Masih D, Rohani S, Kondo JN, Tatsumi T (2017) Appl Catal B 217:247

    Article  CAS  Google Scholar 

  5. Du X-L, Jiang Z, Su DS, Wang J-Q (2016) ChemSusChem 9:322

    Article  CAS  PubMed  Google Scholar 

  6. Liu L, Zhao C, Xu J, Li Y (2015) Appl Catal B 179:489

    Article  CAS  Google Scholar 

  7. Jo D, Lim JB, Ryu T, Nam I-S, Camblor MA, Hong SB (2015) J Mater Chem 3:19322

    Article  CAS  Google Scholar 

  8. Wang N, Shen K, Huang L, Yu X, Qian W, Chu W (2013) ACS Catal 3:1638

    Article  CAS  Google Scholar 

  9. Ma J, Sun N, Zhang X, Zhao N, Xiao F, Wei W, Sun Y (2009) Catal Today 148:221

    Article  CAS  Google Scholar 

  10. Delarmelina M, Marelli E, Carneiro JWdM, Nolan SP, Buhl M (2017) Chem Eur J 23:14954

    Article  CAS  PubMed  Google Scholar 

  11. Fan G, Zhao H, Duan Z, Fang T, Wan M, He L (2011) Catal Sci Technol 1:1138

    Article  CAS  Google Scholar 

  12. Waugh KC (1992) Catal Today 15:51

    Article  CAS  Google Scholar 

  13. Yang Y, Mims CA, Mei DH, Peden CHF, Campbell CT (2013) J Catal 298:10

    Article  CAS  Google Scholar 

  14. Zhao Y-F, Yang Y, Mims C, Peden CHF, Li J, Mei D (2011) J Catal 281:199

    Article  CAS  Google Scholar 

  15. Yang Y, Evans J, Rodriguez JA, White MG, Liu P (2010) PCCP 12:9909

    Article  CAS  PubMed  Google Scholar 

  16. Yang R, Zhang Y, Iwama Y, Tsubaki N (2005) Appl Catal A 288:126

    Article  CAS  Google Scholar 

  17. Yang R, Yu X, Zhang Y, Li W, Tsubaki N (2008) Fuel 87:443

    Article  CAS  Google Scholar 

  18. Yang R, Fu Y, Zhang Y, Tsubaki N (2004) J Catal 228:23

    Article  CAS  Google Scholar 

  19. Toyir J, Piscina PR, Fierro JLG, Homs N (2001) Appl Catal B 29:207

    Article  CAS  Google Scholar 

  20. Sloczynski J, Grabowski R, Olszewski P, Kozlowska A, Stoch J, Lachowska M, Skrzypek J (2006) Appl Catal A 310:127

    Article  CAS  Google Scholar 

  21. Słoczyński J, Grabowski R, Kozłowska A, Olszewski P, Stoch J, Skrzypek J, Lachowska M (2004) Appl Catal A 278:11

    Article  CAS  Google Scholar 

  22. Saito M, Fujitani T, Takeuchi M, Watanabe T (1996) Appl Catal A 138:311

    Article  CAS  Google Scholar 

  23. Saito M, Fujitani T, Takahara I, Watanabe T, Takeuchi M, Kanai Y, Moriya K, Kakumoto T (1995) Energy Convers Manage 36:577

    Article  CAS  Google Scholar 

  24. Ma Y, Sun Q, Wu D, Fan W-H, Zhang Y-L, Deng J-F (1998) Appl Catal A 171:45

    Article  CAS  Google Scholar 

  25. Inui T, Hara H, Takeguchi T, Kim J-B (1997) Catal Today 36:25

    Article  CAS  Google Scholar 

  26. Bonura G, Cordaro M, Cannilla C, Arena F, Frusteri F (2014) Appl Catal B 152–153:152

    Article  CAS  Google Scholar 

  27. Arena F, Barbera K, Italiano G, Bonura G, Spadaro L, Frusteri F (2007) J Catal 249:185

    Article  CAS  Google Scholar 

  28. Arakawa H, Dubois J-L, Sayama K (1992) Energy Convers Manage 33:521

    Article  CAS  Google Scholar 

  29. Jiang X, Koizumi N, Guo X, Song C (2015) Appl Catal B 170–171:173

    Article  CAS  Google Scholar 

  30. Choi EJ, Lee YH, Lee D-W, Moon D-J, Lee K-Y (2017) J Mol Catal 434:146

    Article  CAS  Google Scholar 

  31. Melian-Cabrera I, Granados ML, Fierro JLG (2002) Catal Lett 79:165

    Article  CAS  Google Scholar 

  32. Yang Y, White MG, Liu P (2011) J Phys Chem C 116:248

    Article  CAS  Google Scholar 

  33. Ye J, Liu C-j, Mei D, Ge Q (2014) J Catal 317:44

    Article  CAS  Google Scholar 

  34. Liang X-L, Dong X, Lin G-D, Zhang H-B (2009) Appl Catal B 88:315

    Article  CAS  Google Scholar 

  35. Iwasa N, Suzuki H, Terashita M, Arai M, Takezawa N (2004) Catal Lett 96:75

    Article  CAS  Google Scholar 

  36. Fan L, Fujimoto K (1995) Energy Convers Manage 36:633

    Article  CAS  Google Scholar 

  37. Fan L, Fujimoto K (1994) J Catal 150:217

    Article  CAS  Google Scholar 

  38. Collins SE, Chiavassa DL, Bonivardi AL, Baltanás MA (2005) Catal Lett 103:83

    Article  CAS  Google Scholar 

  39. Rui N, Wang Z, Sun K, Ye J, Ge Q, Liu C-j (2017) Appl Catal B 218:488

    Article  CAS  Google Scholar 

  40. Delley B (2000) J Chem Phys 113:7756

    Article  CAS  Google Scholar 

  41. Delley B (1990) J Chem Phys 92:508

    Article  CAS  Google Scholar 

  42. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  PubMed  Google Scholar 

  43. Inada Y, Orita H (2008) J Comput Chem 29:225

    Article  CAS  PubMed  Google Scholar 

  44. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  45. Harris IR, Norman M, Gardner WE (1972) J Alloys Compd 29:299

    CAS  Google Scholar 

  46. Halgren TA, Lipscomb WN (1977) Chem Phys Lett 49:225

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingzhe Yu.

Ethics declarations

Conflict of interest

There is no conflict of interest about this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Wu, Y., Dou, M. et al. A DFT Study of Methanol Synthesis from CO2 Hydrogenation on the Pd(111) Surface. Catal Lett 148, 2935–2944 (2018). https://doi.org/10.1007/s10562-018-2497-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2497-y

Keywords

Navigation