Skip to main content
Log in

RETRACTED ARTICLE: Effect of Metal Oxides on the Catalytic Activities of Sulfonated Graphene Oxide for the Esterification of Oleic Acid and Conversion of Waste Cooking Oil to Biodiesel

  • Published:
Catalysis Letters Aims and scope Submit manuscript

This article was retracted on 23 June 2021

This article has been updated

Abstract

Nanocomposites of metal oxides with graphene oxide and other carbon materials have shown superior catalytic activities in many important chemical reactions. A systematic investigation of the effect of oxides of Fe, Co, Ni, Cu, and Zn, on the catalytic activities of sulfonated graphene oxides (GO) is detailed in the present paper. The nanocomposites of GO with the metal oxides were prepared under carefully chosen conditions so that the metal content in the nanocomposites remains similar. The nanocomposites were sulfonated and used as solid acid catalysts in the esterification of oleic acid and trans-esterification of waste cooking oil. Paramagnetic transition metal oxides showed superior catalytic activities over non-magnetic ones with the nanocomposite containing iron oxide being the most active. The so called ‘super acidic’ acid sites on the paramagnetic metal oxides could be the reason for enhanced catalytic activities of their nanocomposites.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Sun M, Liu H, Liu Y, Qu J, Li J (2015) Nanoscale 7:1250

    CAS  PubMed  Google Scholar 

  2. Liu B, Zhang Z (2016) ACS Catal 6:326

    CAS  Google Scholar 

  3. Fangrui M, Hanna M (1999) Biores Technol 70:1

    Google Scholar 

  4. Liu Q, Xin R, Li C, Xu C, Yang J (2013) J Environ Sci (China) 25:823

    CAS  Google Scholar 

  5. McLean DD, Kates M (2003) Biores Technol 89:1

    Google Scholar 

  6. Guo F, Fang Z (2011) Biodiesel feedstocks and processing technologies. InTech, Thousand Oaks, pp 1–21

    Google Scholar 

  7. Sivasamy A, Cheah KY, Fornasiero P et al (2009) ChemSusChem 2:278

    CAS  PubMed  Google Scholar 

  8. Anastopoulos G, Zannikou Y, Stournas S, Kalligeros S (2009) Energies 2:362

    CAS  Google Scholar 

  9. Su F, Guo Y (2014) Green Chem 16:2934

    CAS  Google Scholar 

  10. Narasimharao K, Brown DR, Lee AF, Newman AD, Siril PF, Tavener SJ, Wilson K (2007) J Catal 248:226

    CAS  Google Scholar 

  11. D’Souza R, Vats T, Chattree A, Siril PF (2018) Renew Energy. https://doi.org/10.1016/j.renene.2018.04.035

    Article  Google Scholar 

  12. Nongbe C, Ekou T, Ekou L, Benjamin YK, Grognec EL, Felpin FX (2017) Renew Energy 106:135

    CAS  Google Scholar 

  13. Garg B, Bisht T, Ling Y-C (2014) RSC Adv 4:57297

    CAS  Google Scholar 

  14. Garg B, Bisht T, Ling Y-C (2014) Molecules 19:14582

    PubMed  PubMed Central  Google Scholar 

  15. Machado BF, Serp P (2012) Catal Sci Technol 2:54

    CAS  Google Scholar 

  16. Shuit SH, Yee KF, Lee KT, Subhash B, Tan SH (2013) RSC Adv 3:9070

    CAS  Google Scholar 

  17. Busca G (1999) Phys Chem Chem Phys 1:723

    CAS  Google Scholar 

  18. Huang C, Li C, Shi G (2012) Energy Environ Sci 5:8848

    CAS  Google Scholar 

  19. Silva WLG, De Souza PT, Shimamoto GG, Tubino M (2015) J Braz Chem Soc 26:1745–1750

    Google Scholar 

  20. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    CAS  Google Scholar 

  21. Dubal DP, Dhawale DS, Salunkhe RR et al (2010) J Alloy Compd 492:26

    CAS  Google Scholar 

  22. Bai Y, Sun G, Chen S, Lu L, Bao J (2017) Int J Electrochem Sci 12:652

    CAS  Google Scholar 

  23. Zhu J, Zeng G, Nie F, Xu X, Chen S, Han Q et al (2010) Nanoscale 2:988

    CAS  PubMed  Google Scholar 

  24. Lellala K, Namratha K, Byrappa K (2016) Materialstoday 3:74

    Google Scholar 

  25. Liu W, Tian K, Jiang H, Yu H (2013) Sci Rep 3:2419

    Google Scholar 

  26. Hajjar Z, Kazemeini M, Rashidi A, Bazmi M (2015) Catal Lett 145:1660

    CAS  Google Scholar 

  27. Liu F, Sun J, Zhu L et al (2012) J Mater Chem 22:5495

    CAS  Google Scholar 

  28. Arata K (1996) Appl Catal A 146:3

    CAS  Google Scholar 

  29. Shi P, Su R, Zhu S et al (2012) J Hazard Mater 230:331

    Google Scholar 

  30. Chawla M, Dubey R, Singh G, Sengupta S, Siril PF (2017) Thermochim Acta 654:130

    CAS  Google Scholar 

  31. Chen W, Gui D, Yu S et al (2016) 17th International Conference on Electronic Packaging Technology, pp 249–252

  32. Xu Y, Chen D, Jiao X (2005) J Phys Chem B 109:13561

    CAS  PubMed  Google Scholar 

  33. Zhong L, Yun K (2015) J Nanomed 10:79

    CAS  Google Scholar 

  34. Vats T, Dutt S, Kumar R, Siril PF (2016) Sci Rep 6:33053

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Dubey R, Chawla M, Siril PF, Singh G (2013) Thermochim Acta 57:30

    Google Scholar 

  36. Chawla M, Randhawa JK, Siril PF (2017) New J Chem 41(11):4582

    CAS  Google Scholar 

  37. Hübner M, Simion CE, Tomescu-Stănoiu A, Pokhrel S, Bârsan N, Weimar U (2011) Sens Actuators B 153:347

    Google Scholar 

  38. Akhtar MJ, Ahamed M, Kumar S, Khan MM, Ahmadand J, Alrokayan SA (2012) Int J Nanomed 7:845

    CAS  Google Scholar 

  39. Sharma SK, Bahadur J, Patil PN, Maheshwari P, Mukherjee S, Sudarshan K, Mazumder S, Pujari PK (2013) Chem Phys Chem 14:1055

    CAS  PubMed  Google Scholar 

  40. Rahnama A, Gharagozlou M (2012) Opt Quant Electron 44:313

    CAS  Google Scholar 

  41. Moussodia RO, Balan L, Merlin C, Mustin C, Schneider R (2010) J Mater Chem 20:1147

    CAS  Google Scholar 

  42. Rosset IG, Cavalheiro MC, Assaf EM, Porto ALM (2013) Catal Lett 143:863

    CAS  Google Scholar 

  43. Premaratne WAPJ, Priyadarshana G, Gunawardena SA, de Alwis A (2013) J Sci Univ Kelaniya 8:33

    Google Scholar 

  44. Maqbool W (2015) J Pet Environ Biotechnol 6:3

    Google Scholar 

  45. Birla A, Singh B, Upadhyay SN, Sharma YC (2012) Bioresour Technol 106: 95–100

    CAS  PubMed  Google Scholar 

  46. Knothe G (2006) Anal Biodiesel 83: 823–833

    CAS  Google Scholar 

  47. Banani R, Youssef S, Bezzarga M, Abderrabba M (2015) J Mater Environ Sci 6:1178

    CAS  Google Scholar 

  48. Daramola MO, Nkazi D, Mtshali K (2015) Int J Renew Energy Res 5:1

    Google Scholar 

  49. Lima LS, Barbosa TP, Silva LF et al (2010) Simposio de Metrología 2010, SM2010-S2A-2, pp 1–5. https://www.cenam.mx/sm2010/info/pmiercoles/sm2010-mp06a.pdf

Download references

Acknowledgements

The authors are grateful to IIT Mandi, and AMRC for providing the necessary facilities and the financial support to carry out the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Felix Siril.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 702 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, R.D., Vats, T., Chattree, A. et al. RETRACTED ARTICLE: Effect of Metal Oxides on the Catalytic Activities of Sulfonated Graphene Oxide for the Esterification of Oleic Acid and Conversion of Waste Cooking Oil to Biodiesel. Catal Lett 148, 2848–2855 (2018). https://doi.org/10.1007/s10562-018-2472-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2472-7

Keywords

Navigation