Skip to main content
Log in

Efficient and Reusable Pb(II) Metal–Organic Framework for Knoevenagel Condensation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A microporous lead–organic framework {[Pb4(µ8-MTB)2(H2O)4]·5DMF·H2O}n (MTB = methanetetrabenzoate, DMF = N,N′-dimethylformamide) was synthesized and studied as a catalyst in Knoevenagel condensation reactions. The framework is built from tetranuclear [Pb4(µ3-COO)(µ2-COO)6(COO)(H2O)4] clusters and exhibits a 3D structure, with repeated 1D jar-like cavities with sizes about 14.98 × 7.88 and 14.98 × 13.17 Å2 and BET specific surface area of 980 m2 g−1. To obtain open framework with unsaturated Pb(II) sites needed for catalysis, the thermal activation of the solvent exchanged sample was performed (DMF was exchanged by EtOH). The activated compound was tested in Knoevenagel condensation of bulky aldehydes and active methylene compounds at different temperatures. Excellent catalytic conversion and selectivity in condensation of small-sized aldehydes with malononitrile was observed, which indicates that the opened Pb(II) sites play a significant role in the heterogeneous catalytic process. Leaching test confirmed the stability of the catalyst in catalytic reactions. Moreover, the compound displayed good recyclability after several reuses without significant decrease in the original catalytic activity.

Graphical Abstract

Novel Pb(II) metal–organic framework was tested in Knoevenagel condensation. The catalyst showed excellent catalytic conversion, selectivity and recyclability. Aldehydes with lower kinetic diameter demonstrated high conversions and yields. Catalyst is less efficient for condensation of larger aromatic aldehydes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jones G (2004) The Knoevenagel condensation. In: Organic reactions, 2nd edn, vol 15. Wiley, New York, pp 204–599

    Google Scholar 

  2. Dhakshinamoorthy A, Opanasenko M, Čejka J, Garcia H (2013) Catal Sci Technol 3:2509–2540

    Article  CAS  Google Scholar 

  3. Walker SD, Borths CJ, DiVirgilio E, Huang L, Liu P, Morrison H, Sugi K, Tanaka M, Woo JCS, Faul MM (2011) Org Process Res Dev 15:570–580

    Article  CAS  Google Scholar 

  4. Jung JC, Lim E, Lee Y, Min D, Ricci J, Park OS, Jung M (2012) Molecules 17:2091–2102

    Article  CAS  PubMed  Google Scholar 

  5. Tietze LF, Rackelmann N (2004) Pure Appl Chem 76:1967–1983

    Article  CAS  Google Scholar 

  6. Gouda MA, Abu-Hashem AA (2012) Green Chem Lett Rev 5:203–209

    Article  CAS  Google Scholar 

  7. Liang F, Pu YJ, Kurata T, Kido J, Nishide H (2005) Polymer 46:3767–3775

    Article  CAS  Google Scholar 

  8. Bhat AR, Selokar RS, Meshram JS, Dongre RS (2014) J Mater Environ Sci 5:1653–1657

    CAS  Google Scholar 

  9. Pasha MA, Manjula K (2011) J Saudi Chem Soc 15:283–286

    Article  CAS  Google Scholar 

  10. Ma M, Li H, Yang W, Wu Q, Shi D, Zhao Y, Feng C, Jiao Q (2018) Catal Lett 148:134–143

    Article  CAS  Google Scholar 

  11. Priede E, Brica S, Bakis E, Udris N, Zicmanis A (2015) New J Chem 39:9132–9142

    Article  CAS  Google Scholar 

  12. Zhu F, Sun X, Lou F. An L, Zhao P (2015) Catal Lett 145:1072–1107

    Article  CAS  Google Scholar 

  13. Wang H, Wang C, Yang Y, Zhao M, Wang Y (2017) Catal Sci Technol 7:405–417

    Article  CAS  Google Scholar 

  14. Maloo P, Roy TK, Sawant DM, Pardasani RT, Salunkhe MM (2016) RSC Adv 6:41897–41906

    Article  CAS  Google Scholar 

  15. Isobe K, Hoshi T, Suzuki T, Hagiwara H (2005) Mol Divers 9:317–320

    Article  CAS  PubMed  Google Scholar 

  16. Khurana JM, Vij K (2010) Catal Lett 138:104–110

    Article  CAS  Google Scholar 

  17. Li JPH, Stockenhuber M (2015) Catal Today 245:108–115

    Article  CAS  Google Scholar 

  18. Ikeue K, Miyoshi N, Tanaka T, Machida M (2011) Catal Lett 141:877–881

    Article  CAS  Google Scholar 

  19. Motokura K, Viswanadham N, Dhar GM, Iwasawa Y (2009) Catal Today 141:19–24

    Article  CAS  Google Scholar 

  20. Tamami B, Fadavi A (2005) Catal Commun 6:747–751

    Article  CAS  Google Scholar 

  21. Li G, Xiao J, Zhang W (2012) Green Chem 14:2234–2242

    Article  CAS  Google Scholar 

  22. Xu J, Shen K, Xue B, Li YX, Cao Y (2013) Catal Lett 143:600–609

    Article  CAS  Google Scholar 

  23. Srasra M, Delsarte S, Gaigneaux EM (2009) Catal Lett 52:1541–1548

    CAS  Google Scholar 

  24. Morris RE, Čejka J (2015) Nat Chem 7:381–388

    Article  CAS  PubMed  Google Scholar 

  25. Almáši M, Zeleňák V, Zukal A, Kuchár J, Čejka J (2016) Dalton Trans 45:1233–1242

    Article  CAS  PubMed  Google Scholar 

  26. Qiu S, Xue M, Zhu G (2014) Chem Soc Rev 43:6116–6140

    Article  CAS  PubMed  Google Scholar 

  27. Li JR, Kuppler RJ, Zhou HC (2009) Chem Soc Rev 38:1477–1504

    Article  CAS  PubMed  Google Scholar 

  28. Ke F, Yuan YP, Qiu LG, Shen YH, Xie AJ, Zhu JF, Tian XY, Zhang LD (2001) J Mater Chem 21:3843–3848

    Article  CAS  Google Scholar 

  29. Qu XL, Gui D, Zheng XL, Li R, Han HL, Li X, Li PZ (2016) Dalton Trans 45:6983–6989

    Article  CAS  PubMed  Google Scholar 

  30. Kurmoo A (2009) Chem Soc Rev 38:1353–1379

    Article  CAS  PubMed  Google Scholar 

  31. Opanasenko M, Shamzhy M, Lamač M, Čejka J (2013) Catal Today 204:94–100

    Article  CAS  Google Scholar 

  32. Zhu L, Liu XQ, Jiang HL, Sun LB (2017) Chem Rev 117:8129–8176

    Article  CAS  PubMed  Google Scholar 

  33. Hu Z, Zhao D (2017) CrystEngComm 19:4066–4081

    Article  CAS  Google Scholar 

  34. Zhu NX, Zhao CW, Wang JC, Li YA, Dong YB (2016) Chem Commun 52:12702–12705

    Article  CAS  Google Scholar 

  35. Burgoyne AR, Meijboom R (2013) Catal Lett 143:563–571

    Article  CAS  Google Scholar 

  36. Toyao T, Fujiwaki M, Horiuchi Y, Matsuoka M (2013) RSC Adv 3:21582–21587

    Article  CAS  Google Scholar 

  37. Canivet J, Vandichela M, Farrusseng D (2016) Dalton Trans 43:4090–4099

    Article  CAS  Google Scholar 

  38. Almáši M, Zeleňák V, Opanasenko M, Čejka J (2014) Dalton Trans 43:3730–3738

    Article  CAS  PubMed  Google Scholar 

  39. Luan Y, Qi Y, Gao H, Andriamitantsoa RS, Zheng N, Wang G (2015) J Mater Chem A 3:17320–17331

    Article  CAS  Google Scholar 

  40. Almáši M, Zeleňák V, Gyepes R, Bourrelly S, Opanasenko M, Llewellyn PL, Čejka J (2018) Inorg Chem 57:1774–1786

    Article  CAS  PubMed  Google Scholar 

  41. Panchenko VN, Timofeeva MN, Jhung SH (2016) Catal Rev 58:209–307

    Article  CAS  Google Scholar 

  42. Valvekens P, Vandichel M, Waroquier M, Van Speybroeck V, De Vos D (2014) J Catal 317:1–10

    Article  CAS  Google Scholar 

  43. Serra-Crespo P, Ramos-Fernandez EV, Gascon J, Kapteijn F (2011) Chem Mater 23:2565–2572

    Article  CAS  Google Scholar 

  44. Tran UPN, Le KKA, Phan NTS (2011) ACS Catal 1:120–127

    Article  CAS  Google Scholar 

  45. Amarante SF, Freire MA, Mendes DTSL, Freitas LS, Ramos ALD (2017) Appl Catal A 548:47–51

    Article  CAS  Google Scholar 

  46. Fang QR, Yuan DQ, Sculley J, Li JR, Han ZB, Zhou HC (2010) Inorg Chem 49:11637–11642

    Article  CAS  PubMed  Google Scholar 

  47. Spectral database for organic compounds, National Institute of Advanced Industrial Science and Technology. http://riodb01.ibase.aist.go.jp/sdbs/

  48. Cheon YE, Suh MP (2008) Chem Eur J 14:3961–3967

    Article  CAS  PubMed  Google Scholar 

  49. Almáši M, Zeleňák V, Gyepes R, Zukal A, Čejka J (2013) Colloids Surf A 437:101–107

    Article  CAS  Google Scholar 

  50. Cheon YE, Suh MP (2009) Chem Commun 2296–2298. https://doi.org/10.1039/B900085B

  51. Ma L, Jin A, Xie Z, Li W (2009) Angew Chem Int Ed 48:9905–9908

    Article  CAS  Google Scholar 

  52. Dhakshinamoorthy A, Heidenreich N, Lenzen D, Stock N (2017) CrystEngComm 19:4187–4193

    Article  CAS  Google Scholar 

  53. Olmstead WN, Margolin Z, Bordwell FG (1980) J Org Chem 45:3295–3299

    Article  CAS  Google Scholar 

  54. Bordwell FG, Fried HE (1981) J Org Chem 46:4327–4331

    Article  CAS  Google Scholar 

  55. Ugale B, Nagaraja CM (2016) RSC Adv 6:28854–28864

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Grant Agency of the Slovak Republic (VEGA) Project No. 1/0745/17, by the Slovak Research and Development Agency under the contracts APVV-0073-14 and APVV-15-520 and the project from P. J. Šafárik University No. VVGS-2016-249. V.Z. and M.A. thank the Ministry of Education, Science, Research and Sport of the Slovak Republic for the financial support of the TRIANGEL team in the frame of the scheme “Top Research Teams in Slovakia”. J.Č. acknowledges the Czech Science Foundation for the support of the project P106/12/G015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimír Zeleňák.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 550 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almáši, M., Zeleňák, V., Opanasenko, M.V. et al. Efficient and Reusable Pb(II) Metal–Organic Framework for Knoevenagel Condensation. Catal Lett 148, 2263–2273 (2018). https://doi.org/10.1007/s10562-018-2471-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2471-8

Keywords

Navigation