Skip to main content
Log in

CO2 Activation and Hydrogenation: A Comparative DFT Study of Ru10/TiO2 and Cu10/TiO2 Model Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Using DFT+U calculations with inclusion of van-der-Waals (vdW) forces, we studied CO2 activation and the initial steps of CO2 hydrogenation over Cu10 and Ru10 clusters supported on the TiO2 anatase (101) surface. CO2 is readily adsorbed and activated on the Ru cluster where direct CO2 dissociation proceeds with a barrier of 0.8 eV. When H atoms are co-adsorbed on the Ru cluster, H-addition to CO2 becomes preferred, as the best Ru sites for CO2 dissociation are blocked. A H atom is added to the CO2 molecule with formation of a formate [HCOO] species and an activation barrier of 1.2 eV. On Cu10/TiO2, only weak adsorption modes of the CO2 molecule are found, whereas H2 readily adsorbs on the Cu cluster. A reduction of the titania support does not significantly change this picture. Therefore, the only viable pathway for the CO2 hydrogenation over Cu10/TiO2 is the addition of a pre-adsorbed H atom to CO2 coming from the gas phase. This corresponds to an Eley–Rideal mechanism for the H-association to CO2. The work shows the importance to consider the hydrogen coverage on the metal cluster as an important variable in modeling the CO2 hydrogenation reaction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Su X, Xu J, Liang B, Duan H, Hou B, Huang Y (2016) Catalytic carbon dioxide hydrogenation to methane: a review of recent studies. J Energy Chem 25:1–13

    Article  CAS  Google Scholar 

  2. Behrens M (2015) Chemical hydrogen storage by methanol: Challenges for the catalytic methanol synthesis from CO2. Recycl Catal 2:78–86

    Google Scholar 

  3. Luntz AC, Nilsson A, Pettersson LGM, Nørskov JK (2008) Chemical bonding at surfaces and interfaces. Elsevier, Amsterdam

    Google Scholar 

  4. Agnelli M, Kolb M, Mirodatos C (1994) CO hydrogenation on a nickel catalyst: 1. Kinetics and modeling of a low-temperature sintering process. J Catal 148:9–21

    Article  CAS  Google Scholar 

  5. Xu J, Su X, Duan H et al (2016) Influence of pretreatment temperature on catalytic performance of rutile TiO2-supported ruthenium catalyst in CO2 methanation. J Catal 333:227–237

    Article  CAS  Google Scholar 

  6. Gupta NM, Kamble VS, Kartha VB, Iyer RM, Thampi KR, Gratzel M (1994) FTIR spectroscopic study of the interaction of CO2 and CO2 + H2 over partially oxidized Ru/TiO2 catalyst. J Catal 146:173–184

    Article  CAS  Google Scholar 

  7. Garbarino G, Bellotti D, Riani P, Magistri L, Busca G (2015) Methanation of carbon dioxide on Ru/Al2O3 and Ni/Al2O3 catalysts at atmospheric pressure: Catalysts activation, behaviour and stability. Int J Hydrog Energy 40:9171–9182

    Article  CAS  Google Scholar 

  8. Abe T, Tanizawa M, Watanabe K, Taguchi A (2009) CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method. Energy Environ Sci 2:315–321

    Article  CAS  Google Scholar 

  9. Eckle S, Anfang H-G, Behm RJ (2011) Reaction intermediates and side products in the methanation of CO and CO2 over supported Ru catalysts in H2-rich reformate gases. J Phys Chem C 115:1361–1367

    Article  CAS  Google Scholar 

  10. Gao J, Liu Q, Gu F, Liu B, Zhong Z, Su F (2015) Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Adv 5:22759–22776

    Article  CAS  Google Scholar 

  11. Studt F, Behrens M, Kunkes EL et al (2015) The mechanism of CO and CO2 hydrogenation to methanol over Cu-based catalysts. ChemCatChem 7:1105–1111

    Article  CAS  Google Scholar 

  12. Kunkes EL, Studt F, Abild-Pedersen F, Schlögl R, Behrens M (2015) Hydrogenation of CO2 and CO to methanol on Cu/ZnO/Al2O3: is there a common intermediate or not? J Catal 328:43–48

    Article  CAS  Google Scholar 

  13. Behrens M, Studt F, Kasatkin I et al (2012) The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336:893

    Article  CAS  Google Scholar 

  14. Bando KK, Sayama K, Kusama H, Okabe K, Arakawa H (1997) In-situ FT-IR study on CO2 hydrogenation over Cu catalysts supported on SiO2, Al2O3, and TiO2. Appl Catal A 165:391–409

    Article  CAS  Google Scholar 

  15. Chen HYT, Tosoni S, Pacchioni G (2015) Adsorption of ruthenium atoms and clusters on anatase TiO2 and tetragonal ZrO2 (101) surfaces: a comparative DFT study. J Phys Chem C 119:10856–10868

    Article  CAS  Google Scholar 

  16. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558

    Article  CAS  Google Scholar 

  17. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B 49:1425

    Article  Google Scholar 

  18. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15

    Article  CAS  Google Scholar 

  19. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  20. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  21. Perdew JP, Burke K, Ernzerhof M (1997) Erratum: generalized gradient approximation made simple. Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  22. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953

    Article  Google Scholar 

  23. Kresse G, Joubert J (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  24. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys Rev B 57:1505

    Article  CAS  Google Scholar 

  25. Hu Z, Metiu H (2011) Choice of U for DFT + U calculations for titanium oxides. J Phys Chem C 115:5841

    Article  CAS  Google Scholar 

  26. Finazzi E, Di Valentin C, Pacchioni G, Selloni A (2008) Excess electron states in reduced bulk anatase TiO2: comparison of standard GGA, GGA + U, and hybrid DFT calculations. J Chem Phys 129:154113

    Article  Google Scholar 

  27. Davidson E (1983) Methods in computational molecular physics. Plenum, New York

    Google Scholar 

  28. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188

    Article  Google Scholar 

  29. Djerdj I, Tonejc AM (2006) Structural investigations of nanocrystalline TiO2 samples. J Alloys Compd 413:159–174

    Article  CAS  Google Scholar 

  30. Bredow T, Giordano L, Cinquini F, Pacchioni G (2004) Electronic properties of rutile TiO2 ultrathin films: Odd-even oscillations with the number of layers. Phys Rev B 70:035419

    Article  Google Scholar 

  31. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comp Chem 27:1787

    Article  CAS  Google Scholar 

  32. Tosoni S, Sauer J (2010) Accurate quantum chemical energies for the interaction of hydrocarbons with oxide surfaces: CH4/MgO(001). Phys Chem Chem Phys 12:14330–14340

    Article  CAS  Google Scholar 

  33. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  34. Chen HYT, Tosoni S, Pacchioni G (2015) Hydrogen adsorption, dissociation, and spillover on Ru10 clusters supported on anatase TiO2 and tetragonal ZrO2 (101) surfaces. ACS Catal 5:5486

    Article  CAS  Google Scholar 

  35. Ruiz Puigdollers A, Schlexer P, Pacchioni G (2015) Gold and silver clusters on TiO2 and ZrO2 (101) surfaces: role of dispersion forces. J Phys Chem C 119:15381–15389

    Article  Google Scholar 

  36. Akamaru S, Shimazaki T, Kubo M, Abe T (2014) Density functional theory analysis of methanation reaction of CO2 on Ru nanoparticle supported on TiO2(101). Appl Catal A 470:405–411

    Article  CAS  Google Scholar 

  37. Islam MM, Calatayud M, Pacchioni G (2011) Hydrogen adsorption and diffusion on the anatase TiO2 (101) surface: a first-principles investigation. J Phys Chem C 115:6809–6814

    Article  CAS  Google Scholar 

  38. Dahl S, Logadottir A, Egeberg RC, Larsen JH, Chorkendorff I, Törnqvist E, Nørskov JK (1999) Role of steps in N2 activation on Ru (0001). Phys Rev Lett 83:1814

    Article  Google Scholar 

  39. Schlexer P, Ruiz Puigdollers A, Pacchioni G (2015) Tuning the charge state of Ag and Au atoms and clusters deposited on oxide surfaces by doping: a DFT study of the adsorption properties of nitrogen-and niobium-doped TiO2 and ZrO2. Phys Chem Chem Phys 17:22342

    Article  CAS  Google Scholar 

  40. Liu C, Yang B, Tyo E et al (2015) Carbon dioxide conversion to methanol over size-selected Cu4 clusters at low pressures. J Am Chem Soc 137:8676–8679

    Article  CAS  Google Scholar 

  41. Schott V, Oberhofer H, Birkner A et al (2013) Chemical activity of thin oxide layers: strong interactions with the support yield a new thin-film phase of ZnO. Angew Chem Int Ed 52:11925

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the European Marie Curie Project CATSENSE (Grant Agreement No. 607417) is gratefully acknowledged. We also thank support from the Italian MIUR through the PRIN Project 2015K7FZLH SMARTNESS “Solar driven chemistry: new materials for photo- and electro-catalysis” and the Regione Lombardia and Italian CINECA supercomputing centre via the LISA joint initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Pacchioni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlexer, P., Chen, HY.T. & Pacchioni, G. CO2 Activation and Hydrogenation: A Comparative DFT Study of Ru10/TiO2 and Cu10/TiO2 Model Catalysts. Catal Lett 147, 1871–1881 (2017). https://doi.org/10.1007/s10562-017-2098-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2098-1

Keywords

Navigation