Skip to main content
Log in

Using Gas-Phase Clusters to Screen Porphyrin-Supported Nanocluster Catalysts for Ethane Oxidation to Ethanol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We demonstrate the use of gas phase metal hydroxide clusters to identify descriptors and generate scaling relationships for predicting catalytic performances of porphyrin-supported metal hydroxide catalysts. Using the gas phase clusters for these purposes takes just 5 % of the time that would have been required if the porphyrin-supported models had been used.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aiken JD, Finke RG (1999) A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. J Mol Catal A Chem 145:1–44

    Article  CAS  Google Scholar 

  2. Brandenberger S, Kröcher O, Tissler A, Althoff R (2008) The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts. Catal Rev 50:492–531

    Article  CAS  Google Scholar 

  3. Wannakao S, Maihom T, Probst M et al (2016) Porous materials as a platform for highly uniform single-atom catalysts: tuning the electronic structure for the low-temperature oxidation of carbon monoxide. J Phys Chem C 120:19686–19697

    Article  CAS  Google Scholar 

  4. Bailey DC, Langer SH (1981) Immobilized transition-metal carbonyls and related catalysts. Chem Rev 81:109–148

    Article  CAS  Google Scholar 

  5. Alexeev OS, Gates BC (2003) Supported bimetallic cluster catalysts. Ind Eng Chem Res 42:1571–1587

    Article  CAS  Google Scholar 

  6. Gates BC (1995) Supported metal clusters: synthesis, structure, and catalysis. Chem Rev 95:511–522

    Article  CAS  Google Scholar 

  7. Hlatky GG (2000) Heterogeneous single-site catalysts for olefin polymerization. Chem Rev 100:1347–1376

    Article  CAS  Google Scholar 

  8. Böhme DK, Schwarz H (2005) Gas-phase catalysis by atomic and cluster metal ions: the ultimate single-site catalysts. Angew Chem Int Ed Engl 44:2336–2354

    Article  Google Scholar 

  9. Yang X-F, Wang A, Qiao B et al (2013) Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res 46:1740–1748

    Article  CAS  Google Scholar 

  10. Thomas JM, Raja R (2006) The advantages and future potential of single-site heterogeneous catalysts. Top Catal 40:3–17

    Article  CAS  Google Scholar 

  11. Qiao B, Wang A, Yang X et al (2011) Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 3:634–641

    Article  CAS  Google Scholar 

  12. Flytzani-Stephanopoulos M, Gates BC (2012) Atomically dispersed supported metal catalysts. Annu Rev Chem Biomol Eng 3:545–574

    Article  CAS  Google Scholar 

  13. Kargbo DM, Wilhelm RG, Campbell DJ (2010) Natural gas plays in the marcellus shale: challenges and potential opportunities. Environ Sci Technol 44:5679–5684

    Article  CAS  Google Scholar 

  14. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1:37–46

    Article  Google Scholar 

  15. Norskov JK, Abild-Pedersen F, Studt F, Bligaard T (2011) Density functional theory in surface chemistry and catalysis. Proc Natl Acad Sci 108:937–943.

    Article  CAS  Google Scholar 

  16. Nørskov JK, Bligaard T, Logadottir A et al (2002) Universality in heterogeneous catalysis. J Catal 209:275–278

    Article  Google Scholar 

  17. Grabow LC, Studt F, Abild-Pedersen F et al (2011) Descriptor-based analysis applied to HCN synthesis from NH3 and CH4. Angew Chemie 123:4697–4701.

    Article  Google Scholar 

  18. Greeley J, Jaramillo TF, Bonde J et al (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913

    Article  CAS  Google Scholar 

  19. Jones G, Jakobsen J, Shim S et al (2008) First principles calculations and experimental insight into methane steam reforming over transition metal catalysts. J Catal 259:147–160

    Article  CAS  Google Scholar 

  20. Andersson M, Bligaard T, Kustov A et al (2006) Toward computational screening in heterogeneous catalysis: pareto-optimal methanation catalysts. J Catal 239:501–506

    Article  CAS  Google Scholar 

  21. Grabow LC (2014) Computational catalyst screening. In: Computational catalysis. The Royal Society of Chemistry, pp 1–58

  22. Abild-Pedersen F, Greeley J, Studt F et al (2007) Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 99:16105

    Article  CAS  Google Scholar 

  23. Greeley J (2016) Theoretical heterogeneous catalysis: scaling relationships and computational catalyst design. Annu Rev Chem Biomol Eng 7:605–635

    Article  Google Scholar 

  24. Montemore MM, Medlin JW (2014) Scaling relations between adsorption energies for computational screening and design of catalysts. Catal Sci Technol 4:3748–3761

    Article  CAS  Google Scholar 

  25. Wang C-M, Brogaard RY, Weckhuysen BM et al (2014) Reactivity descriptor in solid acid catalysis: predicting turnover frequencies for propene methylation in zeotypes. J Phys Chem Lett 5:1516–1521

    Article  CAS  Google Scholar 

  26. Wang C-M, Chuan-Ming W, Brogaard RY et al (2015) Transition-state scaling relations in zeolite catalysis: influence of framework topology and acid-site reactivity. Catal Sci Technol 5:2814–2820

    Article  CAS  Google Scholar 

  27. Bukowski BC, Jeffrey G (2016) Scaling relationships for molecular adsorption and dissociation in Lewis acid zeolites. J Phys Chem C 120:6714–6722

    Article  CAS  Google Scholar 

  28. Wang Y, Ying W, Montoya JH et al (2015) Scaling relationships for binding energies of transition metal complexes. Catal Lett 146:304–308

    Article  Google Scholar 

  29. Schröder D, Schwarz H (1990) FeO+ activates methane. Angew Chemie Int Ed Eng 29:1433–1434

    Article  Google Scholar 

  30. Schröder D, Schwarz H, Clemmer DE et al (1997) Activation of hydrogen and methane by thermalized FeO+ in the gas phase as studied by multiple mass spectrometric techniques. Int J Mass Spectrom Ion Proc 161:175–191

    Article  Google Scholar 

  31. Harvey JN, Diefenbach M, Schröder D, Schwarz H (1999) Oxidation properties of the early transition-metal dioxide cations MO2+ (MT = Ti, V, Zr, Nb) in the gas-phase. Int J Mass Spectrom 182–183:85–97

    Article  Google Scholar 

  32. Hammond C, Conrad S, Hermans I (2012) Oxidative methane upgrading. ChemSusChem 5:1668–1686

    Article  CAS  Google Scholar 

  33. Woertink JS, Smeets PJ, Groothaert MH et al (2009) A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Proc Natl Acad Sci 106:18908–18913

    Article  CAS  Google Scholar 

  34. Grundner S, Markovits MAC, Li G et al (2015) Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat Commun 6:7546

    Article  Google Scholar 

  35. Liu C-C, Mou C-Y, Yu SS-F, Chan SI (2016) Heterogeneous formulation of the tricopper complex for efficient catalytic conversion of methane into methanol at ambient temperature and pressure. Energy. Environ Sci 9:1361–1374

    CAS  Google Scholar 

  36. Avila JR, Emery JD, Pellin MJ et al (2016) Porphyrins as templates for site-selective atomic layer deposition: vapor metalation and in situ monitoring of island growth. ACS Appl Mater Interfaces 8:19853–19859

  37. Feng D, Gu Z-Y, Li J-R et al (2012) Zirconium-metalloporphyrin PCN-222: mesoporous metal–organic frameworks with ultrahigh stability as biomimetic catalysts. Angew Chemie Int Ed 51:10307–10310

    Article  CAS  Google Scholar 

  38. Rahimi R, Rahmatollah R, Sara S, Fard EH (2015) Fluorine-doped TiO2 nanoparticles sensitized by tetra(4-carboxyphenyl)porphyrin and zinc tetra(4-carboxyphenyl)porphyrin: preparation, characterization, and evaluation of photocatalytic activity. Environ Prog Sustain Energy 34:1341–1348

    Article  CAS  Google Scholar 

  39. O’Neill BJ, Jackson DHK, Lee J et al (2015) Catalyst design with atomic layer deposition. ACS Catal 5:1804–1825

    Article  Google Scholar 

  40. George SM (2010) Atomic layer deposition: an overview. Chem Rev 110:111–131

    Article  CAS  Google Scholar 

  41. Lim BS, Rahtu A, Gordon RG (2003) Atomic layer deposition of transition metals. Nat Mater 2:749–754

    Article  CAS  Google Scholar 

  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision B.01 Gaussian, Inc., Wallingford

    Google Scholar 

  43. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  44. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297

    Article  CAS  Google Scholar 

  45. Chung LW, Sameera WMC, Ramozzi R et al (2015) The ONIOM method and its applications. Chem Rev 115:5678–5796

    Article  CAS  Google Scholar 

  46. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101

    Article  Google Scholar 

  47. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

  48. Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple. Phys Rev Lett 78:1396

  49. Maseras F (1998) Binding of dioxygen in a picket-fence porphyrin complex of iron. A theoretical QM/MM study. New J Chem 22:322–327

    Google Scholar 

  50. Foresman JB, Frisch A, Gaussian I (1996) Exploring chemistry with electronic structure methods. Gaussian, Inc., Wallingford

    Google Scholar 

  51. Bauernschmitt R, Ahlrichs R (1996) Stability analysis for solutions of the closed shell Kohn–Sham equation. J Chem Phys 104:9047–9052

  52. Seeger R, Pople JA (1977) Self-consistent molecular orbital methods. XVIII. Constraints and stability in Hartree–Fock theory. J Chem Phys 66:3045

    Article  CAS  Google Scholar 

  53. Li X, Frisch MJ (2006) Energy-represented direct inversion in the iterative subspace within a hybrid geometry optimization method. J Chem Theory Comput 2:835–839

    Article  CAS  Google Scholar 

  54. Medford AJ, Shi C, Hoffmann MJ et al (2015) CatMAP: a software package for descriptor-based microkinetic mapping of catalytic trends. Catal Lett 145:794–807

    Article  CAS  Google Scholar 

  55. Bahn SR, Jacobsen KW (2002) An object-oriented scripting interface to a legacy electronic structure code. Comput Sci Eng 4:56–66

    Article  CAS  Google Scholar 

  56. Yamamoto N, Koga N, Nagaoka M (2012) Ferryl–Oxo species produced from fenton’s reagent via a two-step pathway: minimum free-energy path analysis. J Phys Chem B 116:14178–14182

    Article  CAS  Google Scholar 

  57. Verma P, Vogiatzis KD, Planas N et al (2015) Mechanism of oxidation of ethane to ethanol at iron(IV)–Oxo sites in magnesium-diluted Fe 2 (dobdc). J Am Chem Soc 137:5770–5781

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported as part of the Inorganometallic Catalyst Design Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award DE-SC0012702. Simulations were performed on the Palmetto Supercomputer Cluster, which is maintained by the Cyberinfrastructure Technology Integration Group at Clemson University. We thank Andrew Samstag, who is an undergraduate research assistant in our group, for his help in setting up the simulations for the porphyrin supported catalysts. We would also like to thank Pere Miró (University of North Florida) for helpful discussions about setting up the QM/QM ONIOM model for the porphyrin supported catalysts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel B. Getman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 980 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pellizzeri, S., Jones, I.A., Doan, H.A. et al. Using Gas-Phase Clusters to Screen Porphyrin-Supported Nanocluster Catalysts for Ethane Oxidation to Ethanol. Catal Lett 146, 2566–2573 (2016). https://doi.org/10.1007/s10562-016-1890-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1890-7

Keywords

Navigation