Skip to main content

Advertisement

Log in

Hydrodeoxygenation of Cresols Over Mo/Al2O3 and CoMo/Al2O3 Sulfided Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The hydrodeoxygenation (HDO) of cresol isomers was investigated at 340 °C under 4 MPa over Mo/Al2O3 and CoMo/Al2O3 sulfided catalysts. Over both catalysts, the reactivity of cresols followed the order: m-cresol > p-cresol > o-cresol. These phenolic compounds were converted by two deoxygenation routes. The desired direct deoxygenation (DDO) route, leading to toluene, was strongly promoted by cobalt. On the contrary, the HYDrogenation route (yielding methylcyclohexenes and methylcyclohexane) was favored over Mo/Al2O3 and practically not affected by the presence of cobalt. To explain the formation of these deoxygenated products, the participation of different kinds of active sites such metal-decorated edge and brim-model was suggested. Thus, we proposed a reaction mechanism involving a schematic CoMoS active site which allowed to explain (i) the highest reactivity of m-cresol by the involvement of a stabilized cationic intermediate and (ii) the lowest reactivity of o-cresol, ascribed to a steric hindrance of methyl group during the initial tautomerization step.

Graphical Abstract

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Huber GW, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Ed 46:7184–7201. doi:10.1002/anie.200604504

    Article  CAS  Google Scholar 

  2. Valle B, Gayubo AG, Aguayo AT et al (2010) Selective production of aromatics by crude bio-oil valorization with a nickel-modified HZSM-5 zeolite catalyst. Energy Fuels 24:2060–2070. doi:10.1021/ef901231j

    Article  CAS  Google Scholar 

  3. Park HJ, Park K-H, Jeon J-K et al (2012) Production of phenolics and aromatics by pyrolysis of miscanthus. Fuel 97:379–384. doi:10.1016/j.fuel.2012.01.075

    Article  CAS  Google Scholar 

  4. Gerssen-Gondelach SJ, Saygin D, Wicke B et al (2014) Competing uses of biomass: assessment and comparison of the performance of bio-based heat, power, fuels and materials. Renew Sustain Energy Rev 40:964–998. doi:10.1016/j.rser.2014.07.197

    Article  CAS  Google Scholar 

  5. Marcilly C (2006) Acido-basic catalysis: application to refining and petrochemistry. Editions Technip

  6. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599. doi:10.1021/cr900354u

    Article  CAS  Google Scholar 

  7. Calvo-Flores FG, Dobado JA (2010) Lignin as renewable raw material. ChemSusChem 3:1227–1235. doi:10.1002/cssc.201000157

    Article  CAS  Google Scholar 

  8. Sannigrahi P, Pu Y, Ragauskas A (2010) Cellulosic biorefineries—unleashing lignin opportunities. Curr Opin Environ Sustain 2:383–393. doi:10.1016/j.cosust.2010.09.004

    Article  Google Scholar 

  9. Li C, Zhao X, Wang A et al (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115:11559–11624. doi:10.1021/acs.chemrev.5b00155

    Article  CAS  Google Scholar 

  10. Brebu M, Vasile C (2010) Thermal degradation of lignin—a review. Cellul Chem Technol 44:353

    CAS  Google Scholar 

  11. Lange H, Decina S, Crestini C (2013) Oxidative upgrade of lignin–recent routes reviewed. Eur Polym J 49:1151–1173

    Article  CAS  Google Scholar 

  12. Behling R, Valange S, Chatel G (2016) Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? what limitations? what trends? Green Chem. doi:10.1039/C5GC03061G

    Google Scholar 

  13. Joffres B, Lorentz C, Vidalie M et al (2014) Catalytic hydroconversion of a wheat straw soda lignin: characterization of the products and the lignin residue. Appl Catal B 145:167–176. doi:10.1016/j.apcatb.2013.01.039

    Article  CAS  Google Scholar 

  14. Joffres B, Nguyen MT, Laurenti D et al (2016) Lignin hydroconversion on MoS 2-based supported catalyst: comprehensive analysis of products and reaction scheme. Appl Catal B 184:153–162. doi:10.1016/j.apcatb.2015.11.005

    Article  CAS  Google Scholar 

  15. Furimsky E (2000) Catalytic hydrodeoxygenation. Appl Catal Gen 199:147–190. doi:10.1016/S0926-860X(99)00555-4

    Article  CAS  Google Scholar 

  16. Bu Q, Lei H, Zacher AH et al (2012) A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis. Bioresour Technol 124:470–477. doi:10.1016/j.biortech.2012.08.089

    Article  CAS  Google Scholar 

  17. Saidi M, Samimi F, Karimipourfard D et al (2013) Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation. Energy Environ Sci 7:103–129. doi:10.1039/C3EE43081B

    Article  Google Scholar 

  18. Furimsky E (2013) Hydroprocessing challenges in biofuels production. Catal Today 217:13–56. doi:10.1016/j.cattod.2012.11.008

    Article  CAS  Google Scholar 

  19. Wang H, Male J, Wang Y (2013) Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds. ACS Catal 3:1047–1070. doi:10.1021/cs400069z

    Article  CAS  Google Scholar 

  20. Ruddy DA, Schaidle JA, Iii JRF et al (2014) Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: catalyst development through the study of model compounds. Green Chem 16:454–490. doi:10.1039/C3GC41354C

    Article  CAS  Google Scholar 

  21. Laurent E, Delmon B (1993) Influence of oxygen-, nitrogen-, and sulfur-containing compounds on the hydrodeoxygenation of phenols over sulfided cobalt-molybdenum/.gamma.-alumina and nickel-molybdenum/.gamma.-alumina catalysts. Ind Eng Chem Res 32:2516–2524. doi:10.1021/ie00023a013

    Article  CAS  Google Scholar 

  22. Romero Y, Richard F, Brunet S (2010) Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts: promoting effect and reaction mechanism. Appl Catal B 98:213–223. doi:10.1016/j.apcatb.2010.05.031

    Article  CAS  Google Scholar 

  23. Bouvier C, Romero Y, Richard F, Brunet S (2011) Effect of H 2 S and CO on the transformation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts: propositions of promoted active sites for deoxygenation pathways based on an experimental study. Green Chem 13:2441–2451

    Article  CAS  Google Scholar 

  24. Odebunmi EO, Ollis DF (1983) Catalytic hydrodeoxygenation: I. conversions of o-, p-, and m-cresols. J Catal 80:56–64

    Article  CAS  Google Scholar 

  25. Wandas R, Surygala J, Śliwka E (1996) Conversion of cresols and naphthalene in the hydroprocessing of three-component model mixtures simulating fast pyrolysis tars. Fuel 75:687–694

    Article  CAS  Google Scholar 

  26. Massoth FE, Politzer P, Concha MC et al (2006) Catalytic hydrodeoxygenation of methyl-substituted phenols: correlations of kinetic parameters with molecular properties. J Phys Chem B 110:14283–14291. doi:10.1021/jp057332g

    Article  CAS  Google Scholar 

  27. Peereboom M, Van de Graaf B, Baas JMA (1982) Experimental and calculated thermodynamic data for the isomeric methylcyclohexenes and methylenecyclohexane. Recl Trav Chim Pays-Bas 101:336–338

    Article  CAS  Google Scholar 

  28. Bui VN, Laurenti D, Afanasiev P, Geantet C (2011) Hydrodeoxygenation of guaiacol with CoMo catalysts. Part I: promoting effect of cobalt on HDO selectivity and activity. Appl Catal B 101:239–245. doi:10.1016/j.apcatb.2010.10.025

    Article  CAS  Google Scholar 

  29. Farag H (2010) Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene over NiMo and CoMo sulfide catalysts: kinetic modeling approach for estimating selectivity. J Colloid Interface Sci 348:219–226. doi:10.1016/j.jcis.2010.04.022

    Article  CAS  Google Scholar 

  30. Hrabar A, Hein J, Gutiérrez OY, Lercher JA (2011) Selective poisoning of the direct denitrogenation route in o-propylaniline HDN by DBT on Mo and NiMo/γ-Al2O3 sulfide catalysts. J Catal 281:325–338. doi:10.1016/j.jcat.2011.05.017

    Article  CAS  Google Scholar 

  31. Badawi M, Vivier L, Pérot G, Duprez D (2008) Promoting effect of cobalt and nickel on the activity of hydrotreating catalysts in hydrogenation and isomerization of olefins. J Mol Catal A 293:53–58. doi:10.1016/j.molcata.2008.07.006

    Article  CAS  Google Scholar 

  32. Wang W, Zhu G, Li L et al (2016) Facile hydrothermal synthesis of flower-like Co–Mo–S catalysts and their high activities in the hydrodeoxygenation of p-cresol and hydrodesulfurization of benzothiophene. Fuel 174:1–8. doi:10.1016/j.fuel.2016.01.074

    Article  CAS  Google Scholar 

  33. Gevert BS, Otterstedt JE, Massoth FE (1987) Kinetics of the HDO of methyl-substituted phenols. Appl Catal 31:119–131

    Article  CAS  Google Scholar 

  34. Badawi M, Cristol S, Paul J-F, Payen E (2009) DFT study of furan adsorption over stable molybdenum sulfide catalyst under HDO conditions. Comptes Rendus Chim 12:754–761. doi:10.1016/j.crci.2008.10.023

    Article  CAS  Google Scholar 

  35. Badawi M, Paul JF, Cristol S et al (2011) Effect of water on the stability of Mo and CoMo hydrodeoxygenation catalysts: a combined experimental and DFT study. J Catal 282:155–164

    Article  CAS  Google Scholar 

  36. Badawi M, Paul J-F, Cristol S, Payen E (2011) Guaiacol derivatives and inhibiting species adsorption over MoS2 and CoMoS catalysts under HDO conditions: a DFT study. Catal Commun 12:901–905. doi:10.1016/j.catcom.2011.02.010

    Article  CAS  Google Scholar 

  37. Chianelli RR (1984) Fundamental Studies of Transition Metal Sulfide Hydrodesulfurization Catalysts. Catal Rev 26:361–393. doi:10.1080/01614948408064718

    Article  CAS  Google Scholar 

  38. Raybaud P (2007) Understanding and predicting improved sulfide catalysts: insights from first principles modeling. Appl Catal A 322:76–91

    Article  CAS  Google Scholar 

  39. Bunch AY, Ozkan US (2002) Investigation of the reaction network of benzofuran hydrodeoxygenation over sulfided and reduced Ni–Mo/Al2O3 catalysts. J Catal 206:177–187. doi:10.1006/jcat.2001.3490

    Article  CAS  Google Scholar 

  40. Romero Y, Richard F, Renème Y, Brunet S (2009) Hydrodeoxygenation of benzofuran and its oxygenated derivatives (2,3-dihydrobenzofuran and 2-ethylphenol) over NiMoP/Al2O3 catalyst. Appl Catal A 353:46–53. doi:10.1016/j.apcata.2008.10.022

    Article  CAS  Google Scholar 

  41. Tuxen AK, Füchtbauer HG, Temel B et al (2012) Atomic-scale insight into adsorption of sterically hindered dibenzothiophenes on MoS2 and Co–Mo–S hydrotreating catalysts. J Catal 295:146–154. doi:10.1016/j.jcat.2012.08.004

    Article  CAS  Google Scholar 

  42. Lauritsen JV, Besenbacher F (2015) Atom-resolved scanning tunneling microscopy investigations of molecular adsorption on MoS2 and CoMoS hydrodesulfurization catalysts. J Catal 328:49–58. doi:10.1016/j.jcat.2014.12.034

    Article  CAS  Google Scholar 

  43. Brillouet S, Baltag E, Brunet S, Richard F (2014) Deoxygenation of decanoic acid and its main intermediates over unpromoted and promoted sulfided catalysts. Appl Catal B 148:201–211

    Article  Google Scholar 

  44. Travert A, Dujardin C, Maugé F et al (2006) CO adsorption on CoMo and NiMo sulfide catalysts: a combined IR and DFT study. J Phys Chem B 110:1261–1270. doi:10.1021/jp0536549

    Article  CAS  Google Scholar 

  45. Paul J-F, Cristol S, Payen E (2008) Computational studies of (mixed) sulfide hydrotreating catalysts. Catal Today 130:139–148. doi:10.1016/j.cattod.2007.07.020

    Article  CAS  Google Scholar 

  46. Krebs E, Silvi B, Raybaud P (2008) Mixed sites and promoter segregation: a DFT study of the manifestation of Le Chatelier’s principle for the Co(Ni)MoS active phase in reaction conditions. Catal Today 130:160–169. doi:10.1016/j.cattod.2007.06.081

    Article  CAS  Google Scholar 

  47. Gandubert AD, Krebs E, Legens C et al (2008) Optimal promoter edge decoration of CoMoS catalysts: a combined theoretical and experimental study. Catal Today 130:149–159. doi:10.1016/j.cattod.2007.06.041

    Article  CAS  Google Scholar 

  48. Lauritsen JV, Kibsgaard J, Olesen GH et al (2007) Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts. J Catal 249:220–233. doi:10.1016/j.jcat.2007.04.013

    Article  CAS  Google Scholar 

  49. Moses PG, Hinnemann B, Topsøe H, Nørskov JK (2009) The effect of Co-promotion on MoS2 catalysts for hydrodesulfurization of thiophene: a density functional study. J Catal 268:201–208. doi:10.1016/j.jcat.2009.09.016

    Article  CAS  Google Scholar 

  50. Zhu Y, Ramasse QM, Brorson M et al (2014) Visualizing the stoichiometry of industrial-style Co-Mo-S catalysts with single-atom sensitivity. Angew Chem Int Ed 53:10723–10727. doi:10.1002/anie.201405690

    Article  CAS  Google Scholar 

  51. Sun M, Nelson AE, Adjaye J (2005) Ab initio DFT study of hydrogen dissociation on MoS2, NiMoS, and CoMoS: mechanism, kinetics, and vibrational frequencies. J Catal 233:411–421. doi:10.1016/j.jcat.2005.05.009

    Article  CAS  Google Scholar 

  52. de Souza PM, Rabelo-Neto RC, Borges LEP et al (2015) Role of keto intermediates in the hydrodeoxygenation of phenol over Pd on oxophilic supports. ACS Catal 5:1318–1329. doi:10.1021/cs501853t

    Article  Google Scholar 

  53. Nie L, de Souza PM, Noronha FB et al (2014) Selective conversion of m-cresol to toluene over bimetallic Ni–Fe catalysts. J Mol Catal A 388–389:47–55. doi:10.1016/j.molcata.2013.09.029

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). Vinicius O. O. Gonçalves is grateful to the Brazilian “Ciência Sem Fronteiras” program (“Science Without Borders”) for his PhD thesis funding (2014–2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Richard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, V.O.O., Brunet, S. & Richard, F. Hydrodeoxygenation of Cresols Over Mo/Al2O3 and CoMo/Al2O3 Sulfided Catalysts. Catal Lett 146, 1562–1573 (2016). https://doi.org/10.1007/s10562-016-1787-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1787-5

Keywords

Navigation