Skip to main content
Log in

Vanadium–Potassium-Alumina Additives for SOx Removal in FCC: Effect of Vanadium Content

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The fluid catalytic cracking is one of the main processes responsible for Sulfur emission in a refinery. Herein the effect of vanadium loading over an alumina previously modified with potassium was studied for sulfur mitigation. Vanadium is a key variable and even at very low amount all reaction steps involved in such process were improved.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vierheilig A, Evans M (2003) Pet Coal 45:147

    CAS  Google Scholar 

  2. Caero LC, Ordóñez LC, Ramírez J, Pedraza F (2005) Catal Today 107:657

    Article  Google Scholar 

  3. Centi G, Perathoner S (2007) Appl Catal B 70:172

    Article  CAS  Google Scholar 

  4. Cheng WC, Kim G, Peters AW, Zhao X, Rajagopalan K (1998) Catal Rev 40:39

    Article  CAS  Google Scholar 

  5. Bhattacharyya AA, Woltermann GM, Yoo JS, Karch JA, Cormier WE (1998) Ind Eng Chem Res 27:1356

    Article  Google Scholar 

  6. Habib ET, Zhao X, Aluris GY, Cheng WC, Book LT, Gilson JP (2002) Advances in fluid catalytic cracking. In: Guisnet M, Gilson J-P (eds) Zeolites for cleaner technologies. Imperial College Press, London

    Google Scholar 

  7. Buchanan JS, Mathias MF, Sodomin JF, Teitman GJ (1994) Patent US5591417A

  8. Centi G, Passarini N, Perathoner S, Riva A (1992) Ind Eng Chem Res 31:1947

    Article  CAS  Google Scholar 

  9. Centi G, Passarini N, Perathoner S, Riva A, Stella G (1992) Ind Eng Chem Res 31:1956

    Article  CAS  Google Scholar 

  10. Wen B, He M, Costello C (2002) Energy Fuels 16:1048

    Article  CAS  Google Scholar 

  11. Cerqueira HS, Caeiro G, Costa L, Ribeiro FR (2008) J Mol Catal A 292:1

    Article  CAS  Google Scholar 

  12. Escobar AS, Pereira MM, Pimenta RDM, Lam YL, Cerqueira HS (2005) Appl Catal A 286:196

    Article  CAS  Google Scholar 

  13. Escobar AS, Pinto FV, Cerqueira HS, Pereira MM (2006) Appl Catal A 315:68

    Article  CAS  Google Scholar 

  14. Trujillo CA, Uribe UN, Knops-Gerrits P, Oviedo LA, Jacobs PA (1997) J Catal 168:1

    Article  CAS  Google Scholar 

  15. Centi G, Perathoner S (2007) Catal Today 127:219

    Article  CAS  Google Scholar 

  16. Corma A, Palomares AE, Rey F (1997) J Catal 170:140

    Article  CAS  Google Scholar 

  17. Kim G, Juskelis MV (1996) Stud Surf Sci Catal 101:137

    Article  CAS  Google Scholar 

  18. Polato CMS, Henriques CA, Rodrigues ACC, Monteiro JLF (2008) Catal Today 133:534

    Article  Google Scholar 

  19. Weckhuysen BM, Keller DE (2003) Catal Today 78:25

    Article  CAS  Google Scholar 

  20. Choudary BM, Kantam ML, Neeraja V, Bandyopadhyay T, Readdy PN (1999) J Mol Catal A 140:25

    Article  CAS  Google Scholar 

  21. Mathieu Y, Tzanis L, Soulard M, Patarin J, Vierling M, Molière M (2013) Fuel Process Technol 114:81

    Article  CAS  Google Scholar 

  22. Santos RP, Silva TC, Gonçalves MLA, Louis B, Pereira EB, Herbst MH, Pereira MM (2012) Appl Catal A 449:23

    Article  Google Scholar 

  23. Huntz AM, Hou PY, Molins R (2007) Mater Sci Eng A 467:59

    Article  Google Scholar 

  24. Silva TC, Pereira EB, Santos RP, Louis B, Tessonnier JP, Pereira MM (2013) Appl Catal A 462:46

    Article  Google Scholar 

  25. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309

    Article  CAS  Google Scholar 

  26. Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373

    Article  CAS  Google Scholar 

  27. Wang J, Li C (2000) Appl Surf Sci 161:406

    Article  CAS  Google Scholar 

  28. Sanchez-Cantu M, Perez-Diaz LM, Maubert AM, Valente JS (2010) Catal Today 150:332

    Article  CAS  Google Scholar 

  29. Klose F, Wolff T, Lorenz H, Seidel-Morgenstern A, Suchorski Y, Piórkowska M, Weiss H (2007) J Catal 247:176

    Article  CAS  Google Scholar 

  30. Reddy EP, Varma RS (2004) J Catal 221:93

    Article  CAS  Google Scholar 

  31. Kanervo JM, Harlin ME, Krause AOI, Bañares MA (2003) Catal Today 78:171

    Article  CAS  Google Scholar 

  32. Erdöhelyi A, Solymosi F (1991) J Catal 129:497

    Article  Google Scholar 

  33. Blanco S, Carrazán SRG, Rives V (2008) Appl Catal A 342:93

    Article  CAS  Google Scholar 

  34. Blasco T, López-Nieto JM (1997) Appl Catal A 157:117

    Article  CAS  Google Scholar 

  35. Dunn JP, Koppula PR, Stenger HG, Wachs IE (1998) Appl Catal B 19:103

    Article  CAS  Google Scholar 

  36. Martra G, Arena F, Coluccia S, Frusteri F, Parmaliana A (2000) Catal Today 63:197

    Article  CAS  Google Scholar 

Download references

Acknowledgments

To CNPq, FAPERJ, Petrobras (under Contract 00500083334.13.2) and Dr. Henrique S. Cerqueira for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Maciel Pereira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, R.P., Guatiguaba, B., Herbst, M.H. et al. Vanadium–Potassium-Alumina Additives for SOx Removal in FCC: Effect of Vanadium Content. Catal Lett 145, 1382–1387 (2015). https://doi.org/10.1007/s10562-015-1548-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1548-x

Keywords

Navigation