Skip to main content
Log in

Energetics of the Water–Gas-Shift Reaction on the Active Sites of the Industrially Used Cu/ZnO/Al2O3 Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The energy profile for the water–gas-shift reaction has been calculated on the active sites of the industrially used Cu/ZnO/Al2O3 catalyst using the BEEF-vdW functional. Our theoretical results suggest that both active site motifs, a copper (211) step as well as a zinc decorated step, are equally active for the water–gas-shift reaction. We find that the splitting of water into surface OH* and H* constitutes the rate-limiting step and that the reaction proceeds through the carboxyl mechanism. Our findings also suggest that mixed copper-zinc step sites are most likely to exhibit superior activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The term “redox mechanism” was originally introduced as “surface redox mechanism” in order to distinguish it from the true “redox mechanism” taking place on high-temperature iron oxide catalysts.

References

  1. Hinrichsen KO, Kochloefl K, Muhler M (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley, Weinheim

    Google Scholar 

  2. Ratnasamy C, Wagner JP (2009) Catal Rev Sci Eng 51:325

    Article  CAS  Google Scholar 

  3. Ovesen CV, Stoltze P, Nørskov JK, Campbell CT (1992) J Catal 134:445

    Article  CAS  Google Scholar 

  4. Ovesen CV, Clausen BS, Hammershøi BS, Steffensen G, Askgaard T, Chorkendorff I, Nørskov JK, Rasmussen PB, Stoltze P, Taylor P (1996) J Catal 158:170

    Article  CAS  Google Scholar 

  5. Hansen JB, Nielsen PEH (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley, Weinheim

    Google Scholar 

  6. Lee S (2007) In: Lee S, Speight JG, Loyalka SK (eds) Handbook of alternative fuel technologies. CRC Press, Boca Raton

    Chapter  Google Scholar 

  7. Tang QL, Chen ZX, He X (2009) Surf Sci 603:2138

    Article  CAS  Google Scholar 

  8. Lin CH, Chen CL, Wang JH (2011) J Phys Chem C 115:18582

    Article  CAS  Google Scholar 

  9. Huang SC, Lin CH, Wang JH (2010) J Phys Chem C 114:9826

    Article  CAS  Google Scholar 

  10. Gokhale AA, Dumesic JA, Mavrikakis M (2008) J Am Chem Soc 130:1402

    Article  CAS  Google Scholar 

  11. Liu P, Rodriguez JA (2007) J Chem Phys 126:164705

    Article  Google Scholar 

  12. Fajín JLC, Cordeiro MNDS, Illas F, Gomes JRB (2009) J Catal 268:131

    Article  Google Scholar 

  13. Wang GC, Nakamura J (2010) J Phys Chem Lett 1:3053

    Article  CAS  Google Scholar 

  14. Yoshihara J, Campbell CT (1996) J Catal 161:776

    Article  CAS  Google Scholar 

  15. Campbell CT, Daube KA (1987) J Catal 104:109

    Article  CAS  Google Scholar 

  16. Nakamura J, Campbell JM, Campbell CT (1990) J Chem Soc, Faraday Trans 86:2725

    Article  Google Scholar 

  17. Chen CS, Lin JH, Lai TW, Liu BH (2009) J Catal 263:155

    Article  CAS  Google Scholar 

  18. Chen CS, Lai TW, Chen CC (2010) J Catal 273:18

    Article  CAS  Google Scholar 

  19. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    Article  Google Scholar 

  20. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  21. Zhang Y, Yang W (1998) Phys Rev Lett 80:890

    Article  CAS  Google Scholar 

  22. Fajín JLC, Illas F, Gomes JRB (2009) J Chem Phys 130:224702

    Article  Google Scholar 

  23. Wellendorff J, Lundgaard KT, Møgelhøj A, Petzold V, Landis DD, Nørskov JK, Bligaard T, Jacobsen KW (2012) Phys Rev B 85:235149

    Article  Google Scholar 

  24. Studt F, Abild-Pedersen F, Varley JB, Nørskov JK (2013) Catal Lett 143:71

    Article  CAS  Google Scholar 

  25. Studt F, Behrens M, Kunkes EL, Thomas N, Zander S, Tarasov A, Schumann J, Varley JB, Abild-Pedersen F, Nørskov JK, Schlögl R (2014) submitted

  26. Rhodes C, Hutchings GJ, Ward AM (1995) Catal Today 23:43

    Article  CAS  Google Scholar 

  27. Cámara AL, Chansai S, Hardacre C, Martínez-Arias A (2014) Int J Hydr Ener 39:4095

    Article  Google Scholar 

  28. Barrio L, Estrella M, Zhou G, Wen W, Hanson JC, Hungria AB, Hornés A, Férnadez-García M, Martínez-Arias A, Rodriguez JA (2010) J Phys Chem C 114:3580

    Article  CAS  Google Scholar 

  29. Wang X, Rodriguez JA, Hanson JC, Gamarra D, Martínez-Arias A, Fernández-García M (2006) J Phys Chem B 110:428

    Article  CAS  Google Scholar 

  30. Yang Y, Mims CA, Disselkamp RS, Kwak JH, Peden CHF, Campbell CT (2010) J Phys Chem C 114:17205

    Article  CAS  Google Scholar 

  31. Behrens M, Studt F, Kasatkin I, Kühl S, Hävecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep BL, Tovar M, Fischer RW, Nørskov JK, Schlögl R (2012) Science 336:893

    Article  CAS  Google Scholar 

  32. Kuld S, Conradsen C, Moses PG, Chorkendorff I, Sehested J (2014) Angew Chem Int Ed 53:5941

    Article  CAS  Google Scholar 

  33. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M et al (2009) J Phys: Condens Matter 21:395502

    Google Scholar 

  34. Bahn SR, Jacobsen KW (2002) Comput Sci Eng 4:56

    Article  CAS  Google Scholar 

  35. Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Nørskov JK (2010) Energy Environ Sci 3:1311

    Article  CAS  Google Scholar 

  36. Koryabkina NA, Phatak AA, Ruettinger WF, Farrauto RJ, Ribeiro FH (2003) J Catal 217:233

    CAS  Google Scholar 

  37. Saito M, Wu J, Tomoda K, Takahara I, Murata K (2002) Catal Lett 83:1

    Article  CAS  Google Scholar 

  38. Fujitani T, Nakamura I, Uchijima T, Nakamura J (1997) Surf Sci 383:285

    Article  CAS  Google Scholar 

  39. Rodriguez JA, Liu P, Wang X, Wen W, Hanson J, Hrbek J, Pérez M, Evans J (2009) Catal Today 143:45

    Article  CAS  Google Scholar 

  40. Rodriguez JA, Liu P, Hrbek J, Evans J, Pérez M (2007) Angew Chem Int Ed 46:1329

    Article  CAS  Google Scholar 

  41. Senanayake SD, Stacchiola D, Rodriguez JA (2013) Acc Chem Res 46:1702

    Article  CAS  Google Scholar 

  42. Yang Y, Mims CA, Mei DH, Peden CHF, Campbell CT (2013) J Catal 298:10

    Article  CAS  Google Scholar 

  43. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences to the SUNCAT Center for Interface Science and Catalysis. The authors would like to thank Jens K. Nørskov for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Studt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Studt, F., Behrens, M. & Abild-Pedersen, F. Energetics of the Water–Gas-Shift Reaction on the Active Sites of the Industrially Used Cu/ZnO/Al2O3 Catalyst. Catal Lett 144, 1973–1977 (2014). https://doi.org/10.1007/s10562-014-1363-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1363-9

Keywords

Navigation