Skip to main content
Log in

Metal–Support Interaction in Pt/VOx and Pd/VOx Systems: A Comparative (HR)TEM Study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The manifestations of strong and reactive metal–support interaction after reduction at elevated temperatures in Pt/V2O3 and Pd/V2O3 systems were studied using a dedicated thin film model system. Pt and Pd particles were prepared by electron-beam evaporation on NaCl(001) growth templates and subsequently embedded in a crystalline V2O3 matrix, prepared by thermal evaporation of V metal in 10−4 mbar oxygen pressure. Template temperatures of 600 K were used to induce the formation of epitaxially-ordered metal–oxide systems. Engineering of the metal–support interface by distinct annealing treatments allows steering the extent and quality of metal–support interaction. Whereas for Pt/V2O3 catalysts, high-temperature reduction at 773 K in hydrogen causes the epitaxial formation of a well-ordered body-centered tetragonal Pt3V intermetallic phase, the Pd/V2O3 system is mostly unaffected by similar treatments and remains in a metal–oxide state. Nevertheless, oxidation at 773 K of both catalysts prior to the hydrogen treatments lifts the epitaxial relation between metal and oxide and in turn, subsequent reduction at high-temperatures (T ≥ 773 K) yields only polycrystalline Pt3V and Pd3V intermetallic phases without particular ordering with respect to the former growth substrate. Along with this formation of intermetallic phases goes a transformation of the support stoichiometry from V2O3 to VO. Catalyst regeneration by partial oxidative decomposition of the intermetallic state is only possible at high-temperatures (T ≥ 750 K), yielding mostly metal particles and vanadium oxides with oxygen contents higher than V:O = 1:2, in particular V3O7.

Graphical Abstract

Adjusting the extent of metal–support contact area by annealing treatments allows for easy steering the structure and morphology of well-defined intermetallic compounds in Pt–VOx and Pd–VOx systems. Well-defined Pt3V intermetallic compounds are formed by direct reduction, whereby lifting the ordering by pre-oxidation yields less-defined compounds with altered metal–support contact area and consequently, strong metal–support interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. van der Lee G, Schuller B, Post H, Favre TLF, Ponec V (1986) J Catal 98:522

    Article  Google Scholar 

  2. van der Lee G, Bastein A, van den Boogert J, Schuller B, Luo HY, Ponec V (1987) J Chem Soc, Faraday Trans 83:2103

    Article  Google Scholar 

  3. Ito S, Ishiguro S, Hagashima K, Kunimori K (1985) Catal Lett 55:197

    Article  Google Scholar 

  4. Kowalski J, van der Lee G, Ponec V (1985) Appl Catal 19:423

    Article  CAS  Google Scholar 

  5. Boffa AB, Bell AT, Somorjai GA (1993) J Catal 139:602

    Article  CAS  Google Scholar 

  6. Beutel T, Knözinger H, Siborov AV, Zaikovskii VI (1992) J Chem Soc, Faraday Trans 88:2775

    Article  CAS  Google Scholar 

  7. Sigl M, Brafrod M, Knözinger H, Vannice MA (1999) Top Catal 8:211

    Article  CAS  Google Scholar 

  8. Kohl A, Linsmeier C, Taglauer E, Knözinger H (2001) PCCP 3:4639

    Article  CAS  Google Scholar 

  9. Neyertz C, Volpe MA, Cigola C (2000) Catal Today 57:255

    Article  CAS  Google Scholar 

  10. Haller GL, Resasco DE (1989) Adv Catal 36:173

    CAS  Google Scholar 

  11. Burch R (1988) In: Paal Z, Menon PG (eds) Hydrogen effects in catalysis, Marcel Dekker, Amsterdam p 347

  12. Petukhov M, Rizzi GA, Granozzi G (2001) Thin Solid Films 406:154

    Article  Google Scholar 

  13. Landolt Börnstein Phase equilibria of binary alloys, New Series III/7b1, Springer, Heidelberg ( 1975)

  14. Surnev S, Sock M, Ramsey MG, Netzer FP, Klötzer B, Unterberger W, Hayek K (2002) Surf Sci 511:392

    Article  CAS  Google Scholar 

  15. Hartmann T, Knözinger H (1996) Z Phys Chem 197:113

    Article  CAS  Google Scholar 

  16. Krenn G, Schennach R (2004) J Chem Phys 120:5729

    Article  CAS  Google Scholar 

  17. Ito S, Chibana C, Nagashima K, Kameoka S, Tomishige K, Kunimori K (2002) Appl Catal A 236:113

    Article  CAS  Google Scholar 

  18. Reichl W, Hayek K (2004) J Catal 222:53

    Article  CAS  Google Scholar 

  19. Reichl W, Hayek K (2002) J Catal 208:422

    Article  CAS  Google Scholar 

  20. Ehrich H, Berndt H, Pohl MM, Jähnisch K, Baerns M (2002) Appl Catal A 230:271

    Article  CAS  Google Scholar 

  21. Penner S, Wang D, Schlögl R, Hayek K (2005) Thin Solid Films 484:10

    Article  CAS  Google Scholar 

  22. Penner S, Jenewein B, Wang D, Schlögl R, Hayek K (2006) Appl Catal A 308:31

    Article  CAS  Google Scholar 

  23. Jenewein B, Penner S, Hayek K (2006) Appl Catal A 308:43

    Article  CAS  Google Scholar 

  24. Penner S, Jenewein B, Wang D, Schlögl R, Hayek K (2006) PCCP 8:1223

    Article  CAS  Google Scholar 

  25. Behrens M, Armbrüster M (2011) Methanol steam reforming, catalysis for alternative energy generation. Springer, New York, pp 175–235

    Google Scholar 

  26. Hucknall DJ (1974) Selective oxidation of hydrocarbons. Academic Press, London, p 212

    Google Scholar 

  27. Rupprechter G, Hayek K, Rendon L, Yacaman MJ (1995) Thin Solid Films 260:148

    Article  CAS  Google Scholar 

  28. Powder Diffraction File, ICDD 1994, PDF Series 2 Sets 1-47, pattern 85-1403

  29. Dwight DE, Downey JW, Conner RA (1961) Acta Cryst 14:75

    Article  CAS  Google Scholar 

  30. Arbuzhov M (1981) Inorg Mater 17:300

    Google Scholar 

  31. Darriet J, Galy J (1972) J Solid State Chem 4:357

    Article  CAS  Google Scholar 

  32. Penner S, Klötzer B, Jenewein B (2007) PCCP 9:2428

    Article  CAS  Google Scholar 

  33. Koster W, Gmohling W (1960) Z Metallkd 51:385

    CAS  Google Scholar 

  34. Landolt Börnstein Phase equilibria of binary alloys, New Series IV/51, ch. 64, Springer, Heidelberg (1991)

  35. Landolt Börnstein (1991) Phase equilibria of binary alloys, New Series IV/51, ch. 68, Springer, Heidelberg

  36. Penner S, Wang D, Su DS, Rupprechter G, Podloucky R, Schlögl R, Hayek K (2003) Surf Sci 532–535:276

    Article  Google Scholar 

  37. Wang D, Penner S, Su DS, Rupprechter G, Hayek K, Schlögl R (2003) J Catal 219:434

    Article  CAS  Google Scholar 

  38. Shi AC, Masel RI (1989) J Catal 120:421

    Article  CAS  Google Scholar 

  39. Harris PJF (1987) Surf Sci 185:L459

    Article  CAS  Google Scholar 

  40. Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Science 272:1924

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Austrain Science foundation (FWF) for financial support under project F4503-N16, which is also performed within the framework of the Forschungsplattform Materials- and Nanoscience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Penner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penner, S., Stöger-Pollach, M. & Thalinger, R. Metal–Support Interaction in Pt/VOx and Pd/VOx Systems: A Comparative (HR)TEM Study. Catal Lett 144, 87–96 (2014). https://doi.org/10.1007/s10562-013-1095-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1095-2

Keywords

Navigation