Skip to main content
Log in

Synthesis of Three-Dimensional Mesostructured Graphitic Carbon Nitride Materials and their Application as Heterogeneous Catalysts for Knoevenagel Condensation Reactions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) mesostructured graphitic carbon nitride materials with tunable surface areas (394–498 m2 g−1) and pore volumes (0.54–1.36 cm3 g−1) were synthesized through a nanocasting method. Mesocellular silica foam (MCF) was used as a template, and carbon tetrachloride (CTC) and ethylenediamine (EDA) were used as precursors. The effect of the ratio of the two precursors (EDA/CTC) on the textural properties and chemical compositions of the CN-MCF samples were investigated by several characterization techniques. The results revealed that the 3D mesostructures were maintained when the ratio of EDA/CTC was greater than 0.4. Among the different CN-MCF materials prepared, CN-MCF-0.4 demonstrated the highest catalytic performance for Knoevenagel condensation reactions, mainly because of its high amount of surface N, high surface area, and large pore volume. In addition, the CN-MCF-0.4 catalyst showed good stability as well as versatility for various substrates.

Graphical Abstract

Mesostructured graphitic carbon nitride materials have been synthesized using MCF as template and the effects of the ratios of the N & C precursors on their physicochemical properties have been comparatively investigated; the materials demonstrate effective and versatile catalytic performance for a series of Knoevenagel condensation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kroke E, Schwarz M (2004) Coord Chem Rev 248:493–532

    Article  CAS  Google Scholar 

  2. Vinu A (2008) Adv Funct Mater 18:816–827

    Article  CAS  Google Scholar 

  3. Qiu Y, Gao L (2003) Chem Commun 18:2378–2379

    Article  Google Scholar 

  4. Xia X, Zhou C, Tong D, Liu M, Zhang D, Fang M, Yu W (2010) Mater Lett 64:2620–2623

    Article  CAS  Google Scholar 

  5. Lee EZ, Jun Y-S, Hong WH, Thomas A, Jin MM (2010) Angew Chem Int Ed Engl 49:9706–9710

    Article  CAS  Google Scholar 

  6. Wang Y, Wang X, Antonietti M (2012) Angew Chem Int Ed Engl 51:68–89

    Article  CAS  Google Scholar 

  7. Goettmann F, Fischer A, Antonietti M, Thomas A (2006) Angew Chem Int Ed Engl 45:4467–4471

    Article  CAS  Google Scholar 

  8. Park SS, Chu S-W, Xue C, Zhao D, Ha C-S (2011) J Mater Chem 21:10801–10807

    Article  CAS  Google Scholar 

  9. Li Q, Yang J, Feng D, Wu Z, Wu Q, Park SS, Ha C-S, Zhao D (2010) Nano Res 3:632–642

    Article  CAS  Google Scholar 

  10. Zhang Y, Mori T, Ye J, Antonietti M (2010) J Am Chem Soc 132:6294–6295

    Article  CAS  Google Scholar 

  11. Kim M, Hwang S, Yu J-S (2007) J Mater Chem 17:1656–1659

    Article  CAS  Google Scholar 

  12. Wang X, Maeda K, Thomas A, Takanabe K (2009) Nat Mater 8:76–80

    Article  CAS  Google Scholar 

  13. Maeda K, Wang X, Nishihara Y, Lu D, Antonietti M, Domen K (2009) J Phys Chem C 113:4940–4947

    Article  CAS  Google Scholar 

  14. Su F, Antonietti M, Wang X (2012) Catal Sci Tech 2:1005–1009

    Article  CAS  Google Scholar 

  15. Goettmann F, Fischer A, Antonietti M, Thomas A (2006) Chem Commun 119:4530–4532

    Article  Google Scholar 

  16. Goettmann F, Fischer A, Antonietti M, Thomas A (2007) New J Chem 31:1455–1460

    Article  CAS  Google Scholar 

  17. Goettmann F, Thomas A, Antonietti M (2007) Angew Chem Int Ed Engl 46:2717–2720

    Article  CAS  Google Scholar 

  18. Jin X, Balasubramanian VV, Selvan ST, Sawant DP, Chari MA, Lu GQ, Vinu A (2009) Angew Chem Int Ed Engl 48:7884–7887

    Article  CAS  Google Scholar 

  19. Groenewolt M, Antonietti M (2005) Adv Mater 17:1789–1792

    Article  CAS  Google Scholar 

  20. Wang Y, Wang X, Antonietti M, Zhang Y (2010) ChemSusChem 3:435–439

    Article  CAS  Google Scholar 

  21. Ansari MB, Min B-H, Mo Y-H, Park S-E (2011) Green Chem 13:1416–1421

    Article  CAS  Google Scholar 

  22. Ansari MB, Jin H, Parvin MN, Park S-E (2012) Catal Today 185:211–216

    Article  CAS  Google Scholar 

  23. Wu Z, Webley PA, Zhao D (2012) J Mater Chem 22:11379–11389

    Article  CAS  Google Scholar 

  24. Zhang Y, Mori T, Ye J (2012) Sci Adv Mater 4:282–291

    Article  CAS  Google Scholar 

  25. Vinu A, Ariga K, Mori T, Nakanishi T, Hishita S, Golberg D, Bando Y (2005) Adv Mater 17:1648–1652

    Article  CAS  Google Scholar 

  26. Liu L, Ma D, Zheng H, Li X, Cheng M, Bao X (2008) Micropor Mesopor Mater 110:216–222

    Article  CAS  Google Scholar 

  27. Vinu A, Srinivasu P, Sawant DP, Mori T, Ariga K, Chang J-S, Jhung S-H, Balasubramanian VV, Hwang YK (2007) Chem Mater 19:4367–4372

    Article  CAS  Google Scholar 

  28. Saravanamurugan S, Palanichamy M, Hartmann M, Murugesan V (2006) Appl Catal A 298:8–15

    Article  CAS  Google Scholar 

  29. Zhang X, Man Lai ES, Martin-Aranda R, Yeung KL (2004) Appl Catal A-Gen 261:109–118

    Article  CAS  Google Scholar 

  30. Freire RM, Morais Batista AH, Souza Filho AG, Filho JM, Saraiva GD, Oliveira AC (2009) Catal Lett 131:135–145

    Article  CAS  Google Scholar 

  31. Kan-Nari N, Okamura S, Fujita S-I, Ozaki J-I, Arai M (2010) Adv Synth Catal 352:1476–1484

    Article  CAS  Google Scholar 

  32. Schmidt-Winkel P, Lukens WW, Zhao D, Yang P, Stucky G, Chmelka B (1999) J Am Chem Soc 121:254–255

    Article  CAS  Google Scholar 

  33. Schmidt-Winkel P, Lukens WW, Yang P, Margolese DI, Lettow JS, Ying JY, Stucky GD (2000) Chem Mater 12:686–696

    Article  CAS  Google Scholar 

  34. Mane GP, Talapaneni SN, Anand C, Varghese S, Iwai H, Ji Q, Ariga K, Mori T, Vinu A (2012) Adv Funct Mater 22:3596–3604

    Article  CAS  Google Scholar 

  35. Liu Y, Feng W, Li T, He H, Dai W, Huang W, Cao Y, Fan K (2006) J Catal 239:125–136

    Article  CAS  Google Scholar 

  36. Lettow JS, Han YJ, Schmidt-Winkel P, Yang P, Zhao D, Stucky GD, Ying JY (2000) Langmuir 16:8291–8295

    Article  CAS  Google Scholar 

  37. Talapaneni SN, Anandan S, Mane GP, Anand C, Dhawale DS, Varghese S, Mano A, Mori T, Vinu A (2012) J Mater Chem 22:9831–9840

    Article  CAS  Google Scholar 

  38. Srinivasu P, Vinu A, Hishita S, Sasaki T, Ariga K, Mori T (2008) Micropor Mesopor Mater 108:340–344

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (21203014), CNPC Innovation Foundation (2011D-5006-0508), Open Foundation of Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials attached to Fudan University (2011MCIMKF01), Open Foundation of Jiangsu Key Laboratory of Fine Petrochemical Engineering attached to Changzhou University (KF1201), and the project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. Jie Xu also thanks Mrs. Li-Juan Zhang and Prof. Wei-Lin Dai, Fudan University for their kind help with SAXS and XPS characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Xu or Yong-Xin Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 318 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Shen, K., Xue, B. et al. Synthesis of Three-Dimensional Mesostructured Graphitic Carbon Nitride Materials and their Application as Heterogeneous Catalysts for Knoevenagel Condensation Reactions. Catal Lett 143, 600–609 (2013). https://doi.org/10.1007/s10562-013-0994-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-0994-6

Keywords

Navigation