Skip to main content

Advertisement

Log in

New Challenges in Heterogeneous Catalysis for the 21st Century

  • Perspective
  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Heterogeneous catalysis has been around for a long time, but has still much room to grow. The empirical trial-and-error mode used to develop catalysts in early times has progressively made way for a more molecularly driven approach to their design. Modern surface-sensitive techniques have opened the way to a better understanding of the mechanisms of catalytic reactions and the demands imposed on catalytic sites. Computational studies have added insights into the structural and energetic details of surface species and the kinetic driving forces for specific surface reactions. Novel nanotechnology and synthetic advances have provided new methods to manufacture better-defined catalysts, with high concentrations of the active sites identified by fundamental mechanistic studies. All combined, these advances have led to the design of new catalysts by taking advantage of the size and shape of the nanoparticles used as active phases and of specific structures and the nature of the support. New research has also been directed to the development of more sophisticated nanostructures, to add new functionalities to simpler catalysts or to combine two or more primary functions into one single catalyst. Much progress has been made in these directions, but the new tools are yet to be fully exploited to resolve present limitations in a myriad of catalytic systems of industrial importance, for energy production and consumption, environmental remediation, and the synthesis of both commodity and fine chemicals.

Graphical Abstract

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ma Z, Zaera F (2005) In: King RB (ed) Encyclopedia of inorganic chemistry. Wiley, New York, p 1768

    Google Scholar 

  2. Armor JN (2011) Catal Today 163:3

    Article  CAS  Google Scholar 

  3. Armor J (2008) What is catalysis? The North American Catalysis Society (NACS). http://www.nacatsoc.org/what.asp

  4. Thomas JM, Thomas WJ (1967) Introduction to the principles of heterogeneous catalysis. Academic Press, London

    Google Scholar 

  5. Zaera F (2001) Prog Surf Sci 69:1

    Article  CAS  Google Scholar 

  6. Woodruff DP, Delchar TA (1994) Modern techniques of surface science. Cambridge University Press, Cambridge

    Book  Google Scholar 

  7. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Nat Chem 1:37

    Article  CAS  Google Scholar 

  8. Somorjai GA (2010) Introduction to surface chemistry and catalysis, 2nd edn. Wiley, New York

    Google Scholar 

  9. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105:1025

    Article  CAS  Google Scholar 

  10. Somorjai GA, Park JY (2008) Angew Chem Int Ed 47:9212

    Article  CAS  Google Scholar 

  11. Lee I, Albiter MA, Zhang Q, Ge J, Yin Y, Zaera F (2011) Phys Chem Chem Phys 13:2449

    Article  CAS  Google Scholar 

  12. Zaera F (2002) J Phys Chem B 106:4043

    Article  CAS  Google Scholar 

  13. Somorjai G, Kliewer C (2009) React Kinet Catal Lett 96:191

    Article  CAS  Google Scholar 

  14. Mallat T, Orglmeister E, Baiker A (2007) Chem Rev 107:4863

    Article  CAS  Google Scholar 

  15. Ma Z, Zaera F (2009) Design of heterogeneous catalysis: new approaches based on synthesis, characterization, and modelling, U.S. Ozkan edn. Wiley-VCH, Weinheim, p 113

    Google Scholar 

  16. Zaera F (2009) Acc Chem Res 42:1152

    Article  CAS  Google Scholar 

  17. Zaera F (2012) Chem Rev. doi:10.1021/cr2002068

    Google Scholar 

  18. Nørskov JK, Bligaard T, Hvolbœk B, Abild-Pedersen F, Chorkendorff I, Christensen CH (2008) Chem Soc Rev 37:2163

    Article  CAS  Google Scholar 

  19. Zaera F (2010) J Phys Chem Lett 1:621

    Article  CAS  Google Scholar 

  20. Hutchings GJ, Haruta M (2005) Appl Catal A 291:2

    Article  CAS  Google Scholar 

  21. Bond GC, Louis C, Thompson DT (2007) Catalysis by gold. Imperial College Press, London

    Google Scholar 

  22. Valden M, Lai X, Goodman DW (1998) Science 281:1647

    Article  CAS  Google Scholar 

  23. Schalow T, Brandt B, Starr DE, Laurin M, Shaikhutdinov SK, Schauermann S, Libuda J, Freund H-J (2007) Phys Chem Chem Phys 9:1347

    Article  CAS  Google Scholar 

  24. Ono LK, Croy JR, Heinrich H, Roldan Cuenya B (2011) J Phys Chem C 115:16856

    Article  CAS  Google Scholar 

  25. Freund HJ (2010) Chem Eur J 16:9384

    Article  CAS  Google Scholar 

  26. Brandt B, Fischer J-H, Ludwig W, Schauermann S, Libuda J, Zaera F, Freund H-J (2008) J Phys Chem C 112:11408

    Article  CAS  Google Scholar 

  27. Narayanan R, El-Sayed MA (2005) J Phys Chem B 109:12663

    Article  CAS  Google Scholar 

  28. Jia C-J, Schüth F (2011) Phys Chem Chem Phys 13:2457

    Article  CAS  Google Scholar 

  29. Scott RWJ, Wilson OM, Crooks RM (2005) J Phys Chem B 109:692

    Article  CAS  Google Scholar 

  30. Albiter MA, Zaera F (2011) Appl Catal A 391:386

    Article  CAS  Google Scholar 

  31. Semagina N, Kiwi-Minsker L (2009) Catal Rev Sci Eng 51:147

    Article  CAS  Google Scholar 

  32. Somorjai GA, Frei H, Park JY (2009) J Am Chem Soc 131:16589

    Article  CAS  Google Scholar 

  33. Huang W, Kuhn JN, Tsung CK, Zhang Y, Habas SE, Yang P, Somorjai GA (2008) Nano Lett 8:2027

    Article  CAS  Google Scholar 

  34. Deutsch DS, Lafaye G, Liu D, Chandler B, Williams CT, Amiridis MD (2004) Catal Lett 97:139

    Article  CAS  Google Scholar 

  35. Albiter MA, Zaera F (2010) Langmuir 26:16204

    Article  CAS  Google Scholar 

  36. Lee I, Morales R, Albiter MA, Zaera F (2008) Proc Natl Acad Sci USA 105:15241

    Article  CAS  Google Scholar 

  37. Lee I, Albiter MA, Zhang Q, Ge J, Yin Y, Zaera F (2011) Phys Chem Chem Phys 13:2449

    Article  CAS  Google Scholar 

  38. Albiter MA, Crooks RM, Zaera F (2010) J Phys Chem Lett 1:38

    Article  CAS  Google Scholar 

  39. Kulkarni A, Lobo-Lapidus RJ, Gates BC (2010) Chem Commun 46:5997

    Article  CAS  Google Scholar 

  40. Serna P, Gates BC (2011) J Am Chem Soc 133:4714

    Article  CAS  Google Scholar 

  41. Che M, Bennett CO (1989) Adv Catal 36:55

    Article  CAS  Google Scholar 

  42. Zaera F, Somorjai GA (1988) In: Paál Z, Menon PG (eds) Hydrogen effects in catalysis: fundamentals and practical applications. Marcel Dekker, New York, p 425

    Google Scholar 

  43. Campbell CT (1989) Adv Catal 36:1

    Article  CAS  Google Scholar 

  44. Rodriguez JA, Goodman DW (1991) Surf Sci Rep 14:1

    Article  CAS  Google Scholar 

  45. Santra AK, Goodman DW (2003) J Phys Condens Matter 15:R31

    Article  CAS  Google Scholar 

  46. Mostafa S, Behafarid F, Croy JR, Ono LK, Li L, Yang JC, Frenkel AI, Roldan Cuenya B (2010) J Am Chem Soc 132:15714

    Article  CAS  Google Scholar 

  47. Alayoglu S, Aliaga C, Sprung C, Somorjai G (2011) Catal Lett 141:914

    Article  CAS  Google Scholar 

  48. Lee I, Zaera F (2005) J Am Chem Soc 127:12174

    Article  CAS  Google Scholar 

  49. Lee I, Zaera F (2005) J Phys Chem B 109:2745

    Article  CAS  Google Scholar 

  50. Lee I, Zaera F (2007) J Phys Chem C 111:10062

    Article  CAS  Google Scholar 

  51. Lee I, Nguyen MK, Morton TH, Zaera F (2008) J Phys Chem C 112:14117

    Article  CAS  Google Scholar 

  52. Delbecq F, Zaera F (2008) J Am Chem Soc 130:14924

    Article  CAS  Google Scholar 

  53. Lee I, Zaera F (2010) J Catal 269:359

    Article  CAS  Google Scholar 

  54. Lee I, Delbecq F, Morales R, Albiter MA, Zaera F (2009) Nat Mater 8:132

    Article  CAS  Google Scholar 

  55. Xiong Y, Wiley BJ, Xia Y (2007) Angew Chem Int Ed 46:7157

    Article  CAS  Google Scholar 

  56. Zhang F, Jin Q, Chan SW (2004) J Appl Phys 95:4319

    Article  CAS  Google Scholar 

  57. Cwiertny DM, Hunter GJ, Pettibone JM, Scherer MM, Grassian VH (2008) J Phys Chem C 113:2175

    Article  CAS  Google Scholar 

  58. Wu Z, Li M, Overbury SH (2012) J Catal 285:61

    Article  CAS  Google Scholar 

  59. Helveg S, Lauritsen JV, Lægsgaard E, Stensgaard I, Nørskov JK, Clausen BS, Topsøe H, Besenbacher F (2000) Phys Rev Lett 84:951

    Article  CAS  Google Scholar 

  60. Topsøe H, Hinnemann B, Nørskov JK, Lauritsen JV, Besenbacher F, Hansen PL, Hytoft G, Egeberg RG, Knudsen KG (2005) Catal Today 107-108:12

    Article  CAS  Google Scholar 

  61. Moses PG, Hinnemann B, Topsøe H, Nørskov JK (2007) J Catal 248:188

    Article  CAS  Google Scholar 

  62. Besenbacher F, Brorson M, Clausen BS, Helveg S, Hinnemann B, Kibsgaard J, Lauritsen JV, Moses PG, Nørskov JK, Topsøe H (2008) Catal Today 130:86

    Article  CAS  Google Scholar 

  63. Hansen LP, Ramasse QM, Kisielowski C, Brorson M, Johnson E, Topsøe H, Helveg S (2011) Angew Chem Int Ed 50:10153

    Article  CAS  Google Scholar 

  64. Venuto PB (1994) Microporous Mater 2:297

    Article  CAS  Google Scholar 

  65. Smit B, Maesen TLM (2008) Nature 451:671

    Article  CAS  Google Scholar 

  66. Wei J, Floudas CA, Gounaris CE, Somorjai GA (2009) Catal Lett 133:234

    Article  CAS  Google Scholar 

  67. Taguchi A, Schüth F (2005) Microporous Mesoporous Mater 77:1

    Article  CAS  Google Scholar 

  68. Drews TO, Tsapatsis M (2005) Curr Opin Colloid Interface Sci 10:233

    Article  CAS  Google Scholar 

  69. Yu J, Xu R (2008) J Mater Chem 18:4021

    Article  CAS  Google Scholar 

  70. Dryzun C, Mastai Y, Shvalb A, Avnir D (2009) J Mater Chem 19:2062

    Article  CAS  Google Scholar 

  71. Jones CW, Tsuji K, Davis ME (1998) Nature 393:52

    Article  CAS  Google Scholar 

  72. Mahurin S, Bao L, Yan W, Liang C, Dai S (2006) J Non Cryst Solids 352:3280

    Article  CAS  Google Scholar 

  73. Detavernier C, Dendooven J, Pulinthanathu Sree S, Ludwig KF, Martens JA (2011) Chem Soc Rev 40:5242

    Article  CAS  Google Scholar 

  74. Elam JW, Dasgupta NP, Prinz FB (2011) MRS Bull 36:899

    Article  CAS  Google Scholar 

  75. Pagán-Torres YJ, Gallo JMR, Wang D, Pham HN, Libera JA, Marshall CL, Elam JW, Datye AK, Dumesic JA (2011) ACS Catal 1:1234

    Article  CAS  Google Scholar 

  76. Ma Z, Brown S, Howe JY, Overbury SH, Dai S (2008) J Phys Chem C 112:9448

    Article  CAS  Google Scholar 

  77. Zhang Q, Lee I, Ge J, Zaera F, Yin Y (2010) Adv Funct Mater 20:2201

    Article  CAS  Google Scholar 

  78. Lee I, Ge J, Zhang Q, Yin Y, Zaera F (2011) Nano Res 4:115

    Article  CAS  Google Scholar 

  79. Blas H, Save M, Pasetto P, Boissière C, Sanchez C, Charleux B (2008) Langmuir 24:13132

    Article  CAS  Google Scholar 

  80. Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Science 304:711

    Article  CAS  Google Scholar 

  81. Luo J, Wang L, Mott D, Njoki PN, Lin Y, He T, Xu Z, Wanjana BN, Lim IIS, Zhong C-J (2008) Adv Mater 20:4342

    Article  CAS  Google Scholar 

  82. De Rogatis L, Cargnello M, Gombac V, Lorenzut B, Montini T, Fornasiero P (2010) ChemSusChem 3:24

    Article  CAS  Google Scholar 

  83. Lee I, Joo JB, Yin Y, Zaera F (2011) Angew Chem Int Ed 50:10208

    Article  CAS  Google Scholar 

  84. Liang X, Li J, Joo JB, Gutiérrez A, Tillekaratne A, Lee I, Yin Y, Zaera F (2012) Angew Chem Int Ed (submitted)

  85. Tada M, Sasaki T, Iwasawa Y (2004) J Phys Chem B 108:2918

    Article  CAS  Google Scholar 

  86. Yang Y, Weng Z, Muratsugu S, Ishiguro N, Ohkoshi SI, Tada M (2012) Chem Eur J 18:1142

    Article  CAS  Google Scholar 

  87. Weng Z, Muratsugu S, Ishiguro N, Ohkoshi SI, Tada M (2011) Dalton Trans 40:2338

    Article  CAS  Google Scholar 

  88. Sinfelt JH (1983) Bimetallic catalysts: discoveries, concepts and applications. Wiley, New York

    Google Scholar 

  89. Rodriguez JA (1996) Surf Sci Rep 24:225

    Article  Google Scholar 

  90. Alexeev OS, Gates BC (2003) Ind Eng Chem Res 42:1571

    Article  CAS  Google Scholar 

  91. Chandler B, Gilbertson J (2006) Top Organomet Chem 20:97

    Article  CAS  Google Scholar 

  92. Peng X, Pan Q, Rempel GL (2008) Chem Soc Rev 37:1619

    Article  CAS  Google Scholar 

  93. Tao F, Grass ME, Zhang Y, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA (2008) Science 322:932

    Article  CAS  Google Scholar 

  94. Ertl G (1980) Catal Rev Sci Eng 2(1):201

    Article  Google Scholar 

  95. Adesina AA (1996) Appl Catal A 138:345

    Article  CAS  Google Scholar 

  96. Sinfelt JH (1981) In: Anderson JR, Boudart M (eds) Catalysis—science and technology, vol 1. Springer, Berlin, p 257

    Google Scholar 

  97. Zaera F (2008) J Phys Chem C 112:16196

    Article  CAS  Google Scholar 

  98. Conner WC Jr, Falconer JL (1995) Chem Rev 95:759

    Article  CAS  Google Scholar 

  99. Prins R (2012) Chem Rev. doi:10.1021/cr200346z

    Google Scholar 

  100. Carrette L, Friedrich KA, Stimming U (2000) ChemPhysChem 1:162

    Article  Google Scholar 

  101. Steele BCH, Heinzel A (2001) Nature 414:345

    Article  CAS  Google Scholar 

  102. Henderson MA (2011) Surf Sci Rep 66:185

    Article  CAS  Google Scholar 

  103. Kamat PV (2007) J Phys Chem C 111:2834

    Article  CAS  Google Scholar 

  104. Maeda K, Domen K (2010) J Phys Chem Lett 1:2655

    Article  CAS  Google Scholar 

  105. Naccache G, Coudurier H, Praliaud P, Meriaudeau P, Gallezot GA, Martin GA, Vedrine JC (eds) (1982) Metal-support and metal-additive effects in catalysis. Elsevier, New York

    Google Scholar 

  106. de la Peña O’Shea VA, Álvarez Galván MC, Platero Prats AE, Campos-Martin JM, Fierro JLG (2011) Chem Commun 47:7131

    Article  CAS  Google Scholar 

  107. Goodman D (2005) Catal Lett 99:1

    Article  CAS  Google Scholar 

  108. Rodriguez JA, Ma S, Liu P, Hrbek J, Evans J, Pérez M (2007) Science 318:1757

    Article  CAS  Google Scholar 

  109. Green IX, Tang W, Neurock M, Yates JT (2011) Science 333:736

    Article  CAS  Google Scholar 

  110. Copéret C, Chabanas M, Saint-Arroman RP, Basset J-M (2003) Angew Chem Int Ed 42:156

    Article  Google Scholar 

  111. Hong J, Lee I, Zaera F (2011) Top Catal 54:1340

    Article  CAS  Google Scholar 

  112. Corma A, Garcia H (2006) Adv Synth Catal 348:1391

    Article  CAS  Google Scholar 

  113. Notestein JM, Katz A (2006) Chem Eur J 12:3954

    Article  CAS  Google Scholar 

  114. Copéret C, Basset J-M (2007) Adv Synth Catal 349:78

    Article  CAS  Google Scholar 

  115. Margelefsky EL, Zeidan RK, Davis ME (2008) Chem Soc Rev 37:1118

    Article  CAS  Google Scholar 

  116. Shylesh S, Thiel WR (2011) ChemCatChem 3:278

    Article  CAS  Google Scholar 

  117. Shiju NR, Alberts AH, Khalid S, Brown DR, Rothenberg G (2011) Angew Chem Int Ed 50:9615

    Article  CAS  Google Scholar 

  118. Huang Y, Xu S, Lin VSY (2011) Angew Chem Int Ed 50:661

    Article  CAS  Google Scholar 

  119. Kuschel A, Drescher M, Kuschel T, Polarz S (2010) Chem Mater 22:1472

    Article  CAS  Google Scholar 

  120. Corma A, Díaz U, García T, Sastre G, Velty A (2010) J Am Chem Soc 132:15011

    Article  CAS  Google Scholar 

  121. De Silva N, Ha JM, Solovyov A, Nigra MM, Ogino I, Yeh SW, Durkin KA, Katz A (2010) Nat Chem 2:1062

    Article  CAS  Google Scholar 

  122. Notestein JM, Iglesia E, Katz A (2004) J Am Chem Soc 126:16478

    Article  CAS  Google Scholar 

  123. Katz A (2011) Control of heterogeneous catalysis via design of organic–inorganic interfaces. Department of Energy, Annapolis

    Google Scholar 

  124. McCoy M (2001) Chem Eng News 79:19

    Google Scholar 

  125. Xia QH, Ge HQ, Ye CP, Liu ZM, Su KX (2005) Chem Rev 105:1603

    Article  CAS  Google Scholar 

  126. Punniyamurthy T, Velusamy S, Iqbal J (2005) Chem Rev 105:2329

    Article  CAS  Google Scholar 

  127. Cavani F, Teles JH (2009) ChemSusChem 2:508

    Article  CAS  Google Scholar 

  128. Hashmi ASK, Hutchings GJ (2006) Angew Chem Int Ed 45:7896

    Article  Google Scholar 

  129. Arakawa H et al (2001) Chem Rev 101:953

    Article  CAS  Google Scholar 

  130. Wald ML (2004) Sci Am 290:66

    Article  CAS  Google Scholar 

  131. Balat M (2008) Int J Hydrogen Energy 33:4013

    Article  CAS  Google Scholar 

  132. Armor JN (1999) Appl Catal A 176:159

    Article  CAS  Google Scholar 

  133. Navarro RM, Pena MA, Fierro JLG (2007) Chem Rev 107:3952

    Article  CAS  Google Scholar 

  134. Chheda JN, Huber GW, Dumesic JA (2007) Angew Chem Int Ed 46:7164

    Article  CAS  Google Scholar 

  135. Klaas MRG, Schöne H (2009) ChemSusChem 2:127

    Article  CAS  Google Scholar 

  136. Zinoviev S, Müller-Langer F, Das P, Bertero N, Fornasiero P, Kaltschmitt M, Centi G, Miertus S (2010) ChemSusChem 3:1106

    Article  CAS  Google Scholar 

  137. Song CS (2002) Catal Today 77:17

    Article  CAS  Google Scholar 

  138. Centi G, Ciambelli P, Perathoner S, Russo P (2002) Catal Today 75:3

    Article  CAS  Google Scholar 

  139. Heck RM, Farrauto RJ (2001) Appl Catal A 221:443

    Article  CAS  Google Scholar 

  140. Raudaskoski R, Turpeinen E, Lenkkeri R, Pongrácz E, Keiski RL (2009) Catal Today 144:318

    Article  CAS  Google Scholar 

  141. Havran V, Duduković MP, Lo CS (2011) Ind Eng Chem Res 50:7089

    Article  CAS  Google Scholar 

  142. Croy J, Mostafa S, Liu J, Sohn Y-H, Roldan Cuenya B (2007) Catal Lett 118:1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial assistance has been provided by the U. S. Department of Energy and by the U. S. National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Zaera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaera, F. New Challenges in Heterogeneous Catalysis for the 21st Century. Catal Lett 142, 501–516 (2012). https://doi.org/10.1007/s10562-012-0801-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0801-9

Keywords

Navigation