Skip to main content

Advertisement

Log in

Synergetic effect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Freeze-drying and irradiation are common process used by tissue banks to preserve and sterilize bone allografts. Freeze dried irradiated bone is known to be more brittle. Whether bone brittleness is due to irradiation alone, temperature during irradiation or to a synergetic effect of the freeze-drying-irradiation process was not yet assessed. Using a left–right femoral head symmetry model, 822 compression tests were performed to assess the influence of sequences of a 25 kGy irradiation with and without freeze-drying compared to the unprocessed counterpart. Irradiation of frozen bone did not cause any significant reduction in ultimate strength, stiffness and work to failure. The addition of the freeze-drying process before or after irradiation resulted in a mean drop of 35 and 31% in ultimate strength, 14 and 37% in stiffness and 46 and 37% in work to failure. Unlike irradiation at room temperature, irradiation under dry ice of solvent–detergent treated bone seemed to have no detrimental effect on mechanical properties of cancellous bone. Freeze-drying bone without irradiation had no influence on mechanical parameters, but the addition of irradiation to the freeze-drying step or the reverse sequence showed a detrimental effect and supports the idea of a negative synergetic effect of both procedures. These findings may have important implications for bone banking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akkus O, Belaney RM, Das P (2005) Free radical scavenging alleviates the biomechanical impairment of gamma radiation sterilized bone tissue. J Orthop Res 23:838–845

    Article  PubMed  Google Scholar 

  • Anderson MJ, Keyak JH, Skinner HB (1992) Compressive mechanical properties of human cancellous Bone after gamma irradiation. J Bone Joint Surg Am 74:747–752

    PubMed  CAS  Google Scholar 

  • Banse X, Ch Delloye, Cornu O, Bourgois R (1996) Comparative left-right mechanical testing of cancellous bone from normal femoral heads. J Biomech 129:1247–1253

    Article  Google Scholar 

  • Borchers RE, Gibson LJ, Burchardt H, Hayes WC (1995) Effects of selected thermal variables on the mechanical properties of trabecular bone tissue. Biomaterials 16:545–551

    Article  PubMed  CAS  Google Scholar 

  • Conrad EU, Ericksen DP, Tencer AF, Strong DM, Mackenzie AP (1993) The effects of freezed-rying and rehydration on cancellous bone. Clin Orthop Rel Res 290:279–284

    Google Scholar 

  • Conway B, Tomford W, Mankin HJ, Hirsch MS, Schooley RT (1991) Radiosensitivity of HIV-1. Potential application to sterilisation of bone allografts. AIDS 5:608–609

    Article  PubMed  CAS  Google Scholar 

  • Cornu O, de-Halleux J, Banse X, Delloye C (1995) Tibial tubercle elevation with Bone grafts. A comparative study of autograft and allograft. Arch Orthop Trauma Surg 114:324–329

    Article  PubMed  CAS  Google Scholar 

  • Cornu O, Banse X, Docquier PL, Luyckx S, Delloye C (2000) Effect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone. J Orthop Res 18:426–431

    Article  PubMed  CAS  Google Scholar 

  • Cornu O, Bavadekar A, Godts B, Van Tomme J, Ch Delloye, Banse X (2003a) Impaction bone grafting with freezed-ried irradiated bone. Part I. Femoral implant stability. Acta Orthop Scand 74:547–552

    Article  PubMed  Google Scholar 

  • Cornu O, Bavadekar A, Godts B, Van Tomme J, Delloye C, Banse X (2003b) Impaction bone grafting with freeze-dried irradiated bone. Part II. Changes in stiffness and compactness of morselized grafts. Acta Orthop Scan 74:553–558

    Article  Google Scholar 

  • Cornu O, Libouton X, Naets B, Godts B, Van Tomme J, Delloye C, Banse X (2004a) Freeze-dried irradiated bone brittleness improves compactness in an impaction bone grafting model. Acta Orthop Scan 75:309–314

    Article  Google Scholar 

  • Cornu O, Manil O, Godts B, Naets B, Vazn Tomme J, Ch Delloye, Banse X (2004b) Neck fracture femoral heads for impaction bone grafting. Acta Orthop Scand 75:303–308

    Article  PubMed  Google Scholar 

  • Currey JD (1988) The effects of drying and re-wetting on some mechanical properties of cortical bone. J Biomech 21:439–441

    Article  PubMed  CAS  Google Scholar 

  • Currey JD, Foreman J, Laketic I, Mitchell J, Pegg DE, Reilly GC (1997) Effects of ionizing radiation on the mechanical properties of human bone. J Orthop Res 15:111–117

    Article  PubMed  CAS  Google Scholar 

  • Delloye C, Allington N, Munting E, Vincent A (1987) Lyophilized banked bone. Technique and results after 3 years of use. Acta Orthop Belg 53:2–11

    PubMed  CAS  Google Scholar 

  • Delloye C, Cnockaert N, Cornu O (2003) Bone substitutes in 2003: an overview. Acta Orthop Belg 69:1–8

    PubMed  CAS  Google Scholar 

  • Dziedzic-Goclawska A, Ostrowski K, Stachowicz W, Michalik J, Grzesik W (1991) Effect of radiation sterilization on the osteoinductive properties and the rate of remodeling of bone implants preserved by lyophilization and deep-freezing. Clin Orthop Rel Res 272:30–37

    Google Scholar 

  • Emms NW, Buckley SC, Stockley I, Hamer AJ, Kerry RM (2009) Mid- to long-term results of irradiated allograft in acetabular reconstruction: a follow-up report. J Bone Joint Surg Br 91:1419–1423

    PubMed  CAS  Google Scholar 

  • Fabry G (1991) Allograft versus autograft bone in idiopathic scoliosis surgery: a multivariate statistical analysis. J Pediatr Orthop 11:465–468

    Article  PubMed  CAS  Google Scholar 

  • Fideler B, Vangness T, Moore T, Li Z, Rasheed S (1994) Effects of gamma irradiation on the human immunodeficiency virus. A Study in frozen human bone patellar ligament bone allografts obtained from infected cadavera. J Bone Joint Surg Am 76:1032–1035

    PubMed  CAS  Google Scholar 

  • Friedlaender GE, Strong DM, Sell KW (1984) Studies on the antigenicity of bone. II. Donor-specific anti-HLA antibodies in human recipients of freeze-dried allografts. J Bone Joint Surg Am 66:107–112

    PubMed  CAS  Google Scholar 

  • Grieb TA, Forng RY, Stafford RE, Lin J, Almeida J, Bogdansky S, Ronholdt C, Drohan WN, Burgess WH (2005) Effective use of optimized, high dose gamma irradiation for pathogen inactivation of human bone allografts. Biomaterials 26:2033–2042

    Article  PubMed  CAS  Google Scholar 

  • Hamer AJ, Stockley I, Elson RA (1999) Changes in allograft bone irradiated at different temperatures. J Bone Joint Surg Br 81:342–344

    Article  PubMed  CAS  Google Scholar 

  • Hernigou P, Marce D, Juliéron A, Marinello G, Dormont D (1993) Stérilisation osseuse par irradiation et virus HIV. Rev Chir Orthop Réparatrice Appar Mot 79:445–451

    PubMed  CAS  Google Scholar 

  • Hiemstra H, Tersmette M, Vos AH, Over J, Van Berkel MP, De Bree H (1991) Inactivation of human immunodeficiency virus by gamma irradiation and its effects on plasma and coagulation factors. Transfusion 31:32–39

    Article  PubMed  CAS  Google Scholar 

  • Keaveny TM, Wachtel EF, Guo XE, Hayes WC (1994) Mechanical behavior of damaged trabecular bone. J Biomech 27:1309–1318

    Article  PubMed  CAS  Google Scholar 

  • Linde F, Sorensen HC (1993) The effect of different storage methods on the mechanical properties of trabecular bone. J Biomech 26:1249–1252

    Article  PubMed  CAS  Google Scholar 

  • Linde F, Hvid I, Pongsoipetch B (1989) Energy absorptive properties of human trabecular bone specimens during axial compression. J Orthop Res 7:432–439

    Article  PubMed  CAS  Google Scholar 

  • Marczyński W, Tylman D, Komender J (1997) Long-term follow-up after transplantation of frozen and radiation sterilized bone grafts. Ann Transplant 2:64–66

    PubMed  Google Scholar 

  • Mitchell E, Stawarz A, Kayacan R, Rimnac C (2004) The effect of gamma radiation sterilization on the fatigue crack propagation resistance of human cortical bone. J Bone Joint Surg Am 86:2648–2657

    PubMed  Google Scholar 

  • Moreau MF, Gallois Y, Basle MF, Chappard D (2000) Gamma irradiation of human bone allografts alters medullary lipids and releases toxic compounds for osteoblast-like cells. Biomaterials 21:369–376

    Article  PubMed  CAS  Google Scholar 

  • Munting E, Faundez A, Manche E (2001) Vertebral reconstruction with cortical allografts. Long-term evaluation. Eur Spine J 10:153–157

    Article  Google Scholar 

  • Norman-Taylor FH, Villar RN (1997) Bone allograft: a cause for concern? J Bone Joint Surg Br 79:178–180

    Article  PubMed  CAS  Google Scholar 

  • Ochs BG, Schmid U, Rieth J, Ateschrang A, Weise K, Ochs U (2008) Acetabular bone reconstruction in revision arthroplasty: a comparison of freeze-dried, irradiated and chemically-treated allograft vitalised with autologous marrow versus frozen non-irradiated allograft. J Bone Joint Surg Br 90:1164–1171

    Article  PubMed  CAS  Google Scholar 

  • Pelker RR, Friedlaender GE, Markham TC, Panjabi MM, Moen CJ (1984) Effects of freezing and freeze-drying on the biomechanical properties of rat Bone. J Orthop Res 1:405–411

    Article  PubMed  CAS  Google Scholar 

  • Thien TM, Welten ML, Verdonschot N, Buma P, Yong P, Schreurs BW (2001) Acetabular revision with impacted freeze-dried cancellous bone chips and a cemented cup: a report of 7 cases at 5 to 9 years’ follow-up. J Arthroplasty 16:666–670

    Article  PubMed  CAS  Google Scholar 

  • Thoren K, Aspenberg P, Thorngren KG (1995) Lipid extracted bank Bone. Bone conductive and mechanical properties. Clin Orthop Rel Res 311:232–246

    Google Scholar 

  • Togozoglu M, Atilla B, Turhan E (2004) Impaction grafting of the proximal femur with freeze-dried bone in revision arthroplasty. In: Christian D, Bannister G (eds) Impaction bone grafting in revision arthroplasty, vol 24. Marcel Dekker Inc, New York, pp 349–362

    Google Scholar 

  • Tokgozoglu M, Aydin M, Atilla B, Caner B (2000) Scintigraphic evaluation of impaction bone grafting for totl hip arthroplasty revision. Arch Orthop Trauma Surg 120:416–419

    Article  Google Scholar 

  • Voggenreiter G, Ascherl R, Blümel G, Schmit-Neuerburg KP (1994) Effects of preservation and sterilization on cortical bone grafts. Arch Orthop Trauma Surg 113:294–296

    Article  PubMed  CAS  Google Scholar 

  • Wheeler DL, Enneking WF (2005) Allograft bone decreases in strength in vivo over time. Clin Orthop Relat Res 435:36–42

    Article  PubMed  Google Scholar 

  • Yin L, Venkatesan S, Webb D, Kalyanasundaram S, Qin Q (2009) Effect of cryo-induced microcracks on microindentation of hydrated cortical bone. Mater Charact 60:783–791

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Cornu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornu, O., Boquet, J., Nonclercq, O. et al. Synergetic effect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone. Cell Tissue Bank 12, 281–288 (2011). https://doi.org/10.1007/s10561-010-9209-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-010-9209-1

Keywords

Navigation