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Abstract

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF 

superfamily that can initiate the apoptosis pathway by binding to its associated death receptors 

DR4 and DR5. The activation of the TRAIL pathway in inducing tumor-selective apoptosis leads 

to the development of TRAIL-based cancer therapies, which include recombinant forms of 

TRAIL, TRAIL receptor agonists and other therapeutic agents. Importantly, TRAIL, DR4 and 

DR5 can all be induced by synthetic and natural agents that activate the TRAIL apoptosis pathway 

in cancer cells. Thus, understanding the regulation of the TRAIL apoptosis pathway can aid in the 

development of TRAIL-based therapies for the treatment of human cancer.
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1 Introduction

Inducing apoptosis in tumor cells is a key anti-cancer treatment strategy [1]. There are two 

major signaling pathways that lead to apoptosis, namely the intrinsic (mitochondrial) 

pathway and the extrinsic (death receptor) pathway [2]. The intrinsic apoptosis pathway is 

controlled by the Bcl-2 family members, which can be initiated by the activation of the 

tumor suppressor p53 in response to DNA damage by chemotherapy and radiotherapy [2]. 

However, conventional chemotherapy often fails to activate the intrinsic apoptosis pathway 

due to the loss of p53-mediated apoptosis [3]. On the other hand, the extrinsic apoptosis 

pathway is initiated by death receptor activation by ligands such as TNF-Related Apoptosis-

Inducing Ligand (TRAIL) [2,4]. TRAIL binds to the death receptors DR4 and DR5 and 

triggers the apoptotic cascade by recruiting Fas-associated protein with death domain 

(FADD) via death domain interactions and thereafter, by FADD binding to the death effector 
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domain present on pro-caspases-8 and -10 to form a death-inducing signaling complex 

(DISC). TRAIL can thus lead to direct activation of the caspase cascade resulting in 

apoptotic cell death. However, the intrinsic and extrinsic apoptotic pathways can crosstalk 

through caspase-8-mediated cleavage of Bid, triggering the intrinsic apoptotic pathway.

The early observation that tumor cells exhibit exquisite sensitivity to TRAIL over normal 

cells highlighted its potential as a novel cancer agent [5]. Consequently, recombinant human 

TRAIL (RhTRAIL) proteins or agonistic antibodies against DR4 and DR5, also called 

PARAs (pro-apoptotic receptor agonists), have been developed and shown to be effective in 

inducing apoptosis in various tumor cell lines [6,7]. In addition, a number of studies have 

indicated that rhTRAIL and PARAs enhance tumor sensitivity to chemotherapy, targeted 

therapy and radiotherapy [8–10]. However, development of resistance to TRAIL-induced 

apoptosis can greatly diminish the clinical potential of TRAIL-based agents. Thus, 

identifying the mechanisms of TRAIL resistance and restoring the sensitivity of tumor cells 

to TRAIL-based therapies could help improve their therapeutic efficacies. In this review, we 

discuss the potential for targeting TRAIL signaling in human cancers and the diverse 

molecular mechanisms by which tumor cells develop TRAIL resistance. In addition, 

emphasis is placed on synthetic and natural agents that stimulate the expression of TRAIL 

and its death receptors to induce cancer cell death.

2 TRAIL signaling

TRAIL is a 281-amino acid type II transmembrane protein that belongs to the TNF 

superfamily [11]. TRAIL is expressed in a variety of human fetal and adult tissues including 

small intestine, colon, spleen, thymus, prostate and placenta, and in immune cells such as 

natural killer (NK) cells, B cells, monocytes and dendritic cells [12–16]. The extracellular 

domain of TRAIL can be shed from the cell surface and are active as self-assembling non-

covalent trimers. Both the soluble and membrane-bounded TRAIL can bind to its five 

distinct receptors DR4, DR5 DcR1, DcR2, and osteoprotegrin (OPG) [17]. DR4 and DR5 

are type I membrane proteins with 2–4 similar cysteine-rich domains in the extracellular 

portion and a ~70 amino acid “death domain” in the cytoplasmic portion. The death 

receptors induce apoptosis upon TRAIL binding. DcR1 and DcR2 are two membrane decoy 

receptors while OPG is a soluble decoy receptor. Those three decoy receptors compete with 

the death receptors for TRAIL binding and thus block apoptotic signals.

Activation of death receptors by TRAIL leads to the recruitment of caspase-8 and FADD to 

form the DISC [4]. This can result in the activation of downstream effector caspases-3, -6, 

and -7 and subsequently induce apoptosis. It has been shown that many other proteins can be 

recruited into the DISC, including Cul3, a member of the cullin family of E3 ligases and 

PP2AC, a catalytic subunit of protein phosphatase 2A [18–20] (Figure 1). In some cells, the 

death receptor-initiated signal is not sufficient to trigger the caspase cascade. Here, the death 

receptor-induced caspase-8 activation cleaves the pro-apoptotic BH3-only Bcl-2 family 

member, Bid, thereby generating active truncated Bid (tBid), which interacts with Bax and 

Bak at the mitochondrial membrane to promote the release of apoptotic factors [21]. These 

apoptotic factors bind to apoptotic peptidase activating factor 1 (Apaf-1) and pro-caspase-9 

to form a functional apoptosome, which initiates the caspase cascade to induce apoptosis. 
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TRAIL can also induce lysosomal translocation of Bim and Bax through recruitment of the 

multifunctional sorting protein phosphofurin acidic cluster sorting protein-2 (PACS-2) to 

DR5-positive endosomes [22]. PACS-2 forms a complex with Bim and Bax on lysosomal 

membranes and releases cathepsin B to induce apoptosis. The metabolic status of the cell 

significantly affects TRAIL-induced cell death. For instance, 2-deoxyglucose, an inhibitor of 

glycolysis enhances TRAIL-induced cell death [23]. Paradoxically, inhibition of glycolysis 

by means of glucose deprivation can inhibit apoptosis [23]. This varied responses to 

glycolytic inhibition is determined by the balance between the activation of AKT and 

AMPK (AMP-activated protein kinase) pathways. The consequence of the balance impacts 

protein translation and the levels of anti- and pro-apoptotic Bcl-2 family member proteins. 

This indicates that cellular metabolic status can regulate the mitochondrial apoptotic 

pathway and thereby sensitivity to antitumor agents such as TRAIL. Treatment with 

methylglyoxal, a side product of glycolysis, or inhibition of glyoxalase I (GLO1) can also 

sensitize cancer cells to TRAIL [24]. TRAIL signaling is also positively regulated by 

mitogen-activated protein kinase kinase (MEK)/extracellular-signal-regulated kinase (ERK) 

signaling as MEK inhibition decreases sensitivity of cancer cells to TRAIL treatment [25]. 

Mechanistically, MEK inhibition negatively regulates DR4 expression and cellular response 

to TRAIL-induced apoptosis [25]. Increasing evidence indicates that endoplasmic reticulum 

(ER) stress can stimulate the activation of TRAIL receptors [26,27]. In macrophages, ER 

stress is a potent inducer of TRAIL signaling, and specific inhibition of Jun N-terminal 

kinase (JNK) and transcription factor AP-1 can inhibit the expression of TRAIL [28]. 

Mechanistically, ER stress induces the expression of activating transcription factor 4 (ATF4), 

which in turn regulates ATF3 and CCAAT/enhancer-binding protein homologous protein 

(CHOP) expression. ATF3 physically interacts with CHOP forming a complex to regulate 

DR5 expression. Loss of ATF4, ATF3, or CHOP reduced the DR5 levels and decreased 

apoptosis [29]. Alternately, TRAIL can induce ER stress via caspase-8-mediated cleavage of 

B cell receptor-associated protein 31 (BAP31) [30]. Increased production of reactive oxygen 

species (ROS) can regulate TRAIL signaling by ROS-ERK-CHOP-mediated up-regulation 

of DR4 and DR5 expression [31]. ROS can also induce Bax phosphorylation at 

threonine-167, sensitizing cells to TRAIL-mediated apoptosis [32]. TRAIL signaling has 

been implicated in activating the NF-κB pathway via the TRAIL receptor death domain 

(DD), FADD, and caspase-8 [33]. Loss-of-function mutation in FADD halts the recruitment 

of caspase-8 and thus prevents NF-κB activation [33].

3 Physiological roles for TRAIL signaling

TRAIL signaling is known to regulate metabolism and differentiation and is also involved in 

some diseases. For example, in adipocytes TRAIL treatment results in a reduction of insulin-

stimulated glucose uptake as well as de novo lipogenesis [34]. This is mediated by 

caspase-8/caspase-3 activation and cleavage of PPARgamma, which in turn down-regulates 

the expression of lipogenic genes, such as Glut-4 and FASN [34]. TRAIL also plays a role in 

spermatogenesis [35]. Specifically, Trail knockout (Trail−/−) mice exhibit significantly lower 

testis to body weight ratios and spermatid head counts, while displaying increased levels of 

basal germ cell apoptosis [35]. In addition, TRAIL is implicated in osteoclast differentiation 

through a TNF receptor-associated factor 6 (TRAF-6)-dependent signaling pathway [36]. 
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TRAIL signaling is also involved in the pathogenesis of pulmonary arterial hypertension 

(PAH) [37]. TRAIL promotes microvascular hyperpermeability through caspase-3 cleavage 

of the endothelial adherens junctions, which is dependent on the phosphatidylinositol 3-

kinase (PI3K) pathway [38]. Furthermore, data from multiple rodent models indicate that 

genetic deletion or antibody blockade of TRAIL can hinder the development of PAH [37]. In 

allergic airway inflammation, TRAIL regulates airway remodeling by up-regulating the E3 

ubiquitin ligase Midline-1 (MID-1), which decreases the dephosphorylation of 

proinflammatory signaling molecules by protein phosphatase 2A [39]. Trail−/− mice lack 

airway remodeling, including peribronchial fibrosis, smooth muscle hypertrophy, and mucus 

hypersecretion [40]. Moreover, TRAIL signaling may be a new target for the treatment of 

some diseases, including liver fibrosis and influenza [41,42]. In addition, TRAIL signaling 

contributes to antiviral immunity by inducing apoptosis and promoting immune homeostasis 

during infection [43]. In a rat model of harmful focal ischemia, immunoneutralization of 

TRAIL significantly decreased tissue damage and exhibited functional recovery, 

underscoring a potential for the treatment of stroke [44]. Studies in the murine inner ear 

revealed a role for increased expression of TRAIL in triggering hair cell and neuronal 

degeneration, which can be suppressed with antibodies against DR5 [45].

4 Mechanisms of TRAIL resistance in cancer

TRAIL has been recognized as a promising target for cancer therapy because it can induce 

apoptosis in tumor cells but not normal cells. Although TRAIL shows high anti-tumor 

activity, resistance to TRAIL-induced apoptosis in tumor cells has been considered a clinical 

obstacle to its application. It is known that tumor cells with high nuclear localization of DR5 

are resistant to TRAIL, whereas tumor cells without nuclear DR5 are highly sensitive to 

TRAIL [46]. The mutation of functional nuclear localization signals or knockdown of 

importin β1 can block the nuclear localization of DR5 and result in increased DR5 

expression on the cell surface, and therefore, TRAIL sensitivity [46]. Low sensitivity to 

TRAIL also correlated with expression of anti-apoptotic members of the Bcl-2 family. For 

example, overexpression of Bcl-2 can inhibit TRAIL-induced apoptosis [47,48], and Bcl-xL 

inhibition significantly sensitized cells to TRAIL-induced apoptosis [49]. In addition, 

TRAIL resistance has been associated with lipid rafts, where the EGFR pathway is activated 

while TRAIL fails to induce effective death-inducing signaling complex formation [50]. 

Inhibition of epidermal growth factor receptor (EGFR) along with knockdown of casitas B-

lineage lymphoma-b (Cbl-b) enhances TRAIL-induced apoptosis in these cells [50]. TRAIL-

induced apoptosis is also altered by the multidrug transporter P-glycoprotein (Pgp) and the 

latter regulates endogenous TRAIL expression [51,52]. Blocking Pgp transport activity 

increases cell sensitivity to TRAIL [51,52]. It is also known that survivin and myeloid cell 

leukemia sequence 1 (Mcl-1) confer TRAIL resistance, and that inhibition of survivin and 

Mcl-1 sensitizes resistant tumor cells to TRAIL [53].

In breast cancer, cell lines of mesenchymal origin are susceptible to TRAIL while epithelial-

like cell lines are TRAIL-resistant [54]. TRAIL sensitivity of breast cancer stem cells was 

inversely correlated with the cellular FLICE-like inhibitory protein (cFLIP), while 

overexpression of cFLIP in the cytosol relieved these cells from cytotoxicity [55]. The 

ERK1/2 pathway regulates cFLIP levels and thus impacts TRAIL sensitivity [56]. Caspase-8 
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is also involved in TRAIL sensitivity. Pro-caspase-8 mutations inhibit activation of the 

TRAIL pathway and confer resistance to death receptor activators [57]. Smad7, a negative 

regulator for the transforming growth factor-β (TGF-β) signaling pathway, binds to the 

caspase-8 promoter and enhances the recruitment of the interferon regulatory factor 1 (IRF1) 

transcription factor to the interferon-stimulated response element (ISRE) on the caspase-8 

promoter [58]. Thus, Smad7 expression can restore the caspase cascade in apoptosis-

resistant cells, rendering them susceptible to TRAIL-induced cell death. NF-κB signaling 

also plays a role in resistance against death receptor-induced apoptosis where TRAIL-

resistant cells display a significant increase in TRAIL-inducible NF-κB activity, while 

TRAIL-sensitive cells display only a moderate level of NF-κB activity [59]. Activation of 

the NF-κB pathway upon TRAIL treatment is dependent on caspase-8-mediated cleavage of 

RIP1 [60]. Cleavage of RIP1 impairs IκB kinase (IKK) recruitment and thus NF-κB 

activation. In TRAIL-resistant cells, cFLIP restricts caspase-8 activity and RIP1 cleavage, 

which generates a cleaved fragment that can activate NF-κB but not apoptosis [60]. In vivo, 

the interaction of TRAIL, DR5 and NF-κB induces lung metastasis of melanoma in mice 

[61]. In cells with a defective mitochondrial apoptotic pathway, TRAIL induced phenotypic 

changes such as membrane blebbing and a transient loss of substrate adhesion properties 

while stimulating the migration potential of these cells [62]. Suppression of the apoptosis 

inhibitor cFLIP results in partial sensitization of TRAIL-resistant cancer cells to the pro-

apoptotic effects of TRAIL, and the levels of cFLIP positively correlated with the survival of 

cancer patients [63,64].

The cytosolic translocation of the nuclear protein, HMGB1 (high mobility group box 1), 

plays a key role in TRAIL-mediated cancer cell death through autophagy [65]. TRAIL 

triggers PARP1 (poly [ADP-ribose] polymerase 1) activation and ADP-ribosylation of 

HMGB1 in cancer cells. PARP1 inhibition blocks HMGB1 cytoplasmic translocation and 

formation of the HMGB1-BECN1 complex, resulting in decreased autophagy, increased 

apoptosis, and increased sensitivity to TRAIL both in vitro and in vivo [65].

Promoter hypermethylation and/or inactivation of TRAIL decoy receptors are observed in a 

majority of cervical cancer patients. Such cervical cancer cell lines were able to effectively 

induce apoptosis upon treatment with TRAIL [66]. MicroRNAs (miRNAs) also play a role 

in the development of TRAIL resistance in different types of cancer. For example, miR-494 

induces TRAIL resistance in non-small-cell lung cancer (NSCLC) by down-regulating the 

apoptosis regulator BIM [67]. In contrast, miR-212 inhibits the anti-apoptotic protein PED/

PEA-15 and thereby overcomes TRAIL resistance [68].

5 Targeting the core machinery of the TRAIL pathway

Identification of TRAIL as an inducer of apoptosis that is selective towards cancer cells has 

been met with great enthusiasm, which has led to the development of TRAIL signaling 

agonists as anti-cancer agents, including TRAIL ligand and antibodies against DR4 and DR5 

[69]. There are a number of TRAIL or TRAIL receptor-based clinical trials for cancer 

patients (Table 1). One such agent, recombinant human TRAIL (rhTRAIL), dulanermin, 

functions as a ligand to death receptors DR4 and DR5 [70]. In a clinical report, a patient 

with refractory chondrosarcoma who developed progressive metastatic chondrosarcoma to 
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the lung showed a partial response to dulanermin treatment that was potentially mediated by 

DR4 present in the patient tumor cells [71]. However, resistance was observed after 62 

months, which may have arisen due to the up-regulation of the pro-survival proteins, 

including NF-κB and Bcl-2 [71].

While death receptor activation can be mediated through soluble human recombinant 

TRAIL, its short half-life as well as sequestration by decoy receptors limits its functionality. 

Generation of DR4 or DR5 agonist antibodies as therapeutic agents attempts to overcome 

the limitations of rhTRAIL [72]. Studies indicate that some monoclonal antibodies to DR4 

or DR5 have been successful in mounting an anti-tumor response. One such example is 

LaDR5, which binds to DR5 and induces apoptosis in tumors [73]. Another DR5 agonist 

antibody, lexatumumab, induces apoptosis in a number of cancer cells [74]. Tigatuzumab 

(TIG), another anti-DR5 agonist antibody, resulted in apoptosis induction in basal-like breast 

cancer cells both in vitro and in vivo [75]. In a phase II trial in triple-negative breast cancer 

(TNBC) patients, use of TIG in combination with albumin-bound paclitaxel (nab-PAC) 

resulted in more patients with complete remission as well as prolonged progression free 

survival [76]. The efficacy of TRAIL receptor agonists also depends on antibody multimer 

formation that leads to receptor clustering on cancer cells. The agonist APG350 addresses 

this issue by incorporating six death receptor-binding sites per drug molecule and shows 

anti-tumor activity both in vitro and in vivo [77]. Secretory TRAIL-armed adenoviral 

(Ad.TRAIL) treatment has also exhibited enhanced apoptotic efficacy. In colorectal cancer 

xenograft models, the treatment with Ad.TRAIL blocked tumor growth and increased 

survival [78]. Ad.TRAIL in combination with mitomycin C and hyperthermia was shown to 

induce the JNK-Bak pathway, leading to apoptosis [79]. Strategies have also been developed 

for targeted delivery of TRAIL-based drugs. For example, TR3 is a TRAIL-based platform 

incorporating a genetically fused trimer that can be further modified to include tumor 

directed targeting moieties [80]. Meso-TR3 incorporates Mesothelin, which is known to 

interact with MUC16, a biomarker associated with several cancer types [81]. Meso-TR3 

displayed binding selectivity and killing efficacy both in vitro and in a xenograft mouse 

model of MUC16-positive ovarian cancer [81]. In addition, other delivery systems, including 

nanoparticles and DNA vaccination were developed to target TRAIL-mediated tumor cell 

death [82,83]. For instance, Decarbazin (DTIC)-loaded polylactic acid (PLA) nanoparticles 

(DTIC-NPs), when conjugated to a highly specific targeting functional TRAIL-receptor 2 

(DR5) monoclonal antibody, were able to specifically target DR5-overexpressing malignant 

melanoma cells and resulted in high cytotoxicity and increased apoptosis [84]. However, the 

current available data from these clinical trials are disappointed. The reasons of these 

disappointed results can be due to several aspects including resistance and patient selection. 

For example, in breast cancer, only TNBC cells but not other subtypes of breast cancer cells 

are susceptible to TRAIL. Therefore, it is conceivable that TRAIL-based therapy in the 

general breast cancer population is not expected to have a therapeutic benefit because TNBC 

only consists of 15–20 of all breast cancers.

6 Activation of the TRAIL pathway by anti-cancer agents

A major problem in clinical trials that use TRAIL-based therapeutics is that cancer cells are 

either intrinsically resistant or acquire resistance to TRAIL. Therefore, agents that can 
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overcome TRAIL resistance have great therapeutic potential. Strategies have developed to 

increase the expression of TRAIL or its death receptors as novel cancer therapeutics.

6.1 Up-regulation of death receptors for activation of the TRAIL apoptosis pathway

Since DR5 was first shown to be induced by clinically used chemotherapeutic agents 

including doxorubicin and etoposide [85], a considerable interest has been generated to 

increase the expression of TRAIL death receptors as novel approaches for development of 

TRAIL-based cancer therapeutics. The idea behind this is that induced DR4 and DR5 can 

easily bind to TRAIL to induce apoptosis. Compounds that have abilities to increase death 

receptor expression can be categorized into three groups (Table 2): 1) clinically used anti-

cancer drugs, 2) the agents that are currently being developed as anti-cancer agents, and 3) 

natural compounds that have anti-cancer activity.

6.1.1—Clinically used anti-cancer drugs include cisplatin, doxorubicin, etoposide, 5-FU, 

mitomycin c and mitoxantrone [86–92]. For example, cisplatin sensitized TRAIL-induced 

apoptosis by up-regulating DR5, leading to activation of caspases and apoptosis [93]. As a 

better alternative to cisplatin, Platinum(IV) complex LA-12 was tested to show higher 

sensitivity to TRAIL [94]. This was associated with Bax/Bak activation, decreased 

mitochondrial membrane potential, caspase-9 activation, and an increase in the expression of 

pro-apoptotic members of the Bcl-2 family of proteins. LA-12 was also a potent inducer of 

Noxa and BimL proteins. Treatment with Dulanermin (TRAIL) in combination with 

carboplatin and pemetrexed displayed increased sensitivity of malignant pleural 

mesothelioma cells compared to treatment with single agents [95]. The increased sensitivity 

to TRAIL was dependent on the increased expression of DR4 and DR5 in a p53-dependent 

manner mediated by carboplatin and pemetrexed [95]. Furthermore, it has been shown that 

the histone deacetylase (HDAC) inhibitors suberoylanilide hydroxamic acid and trichostatin 

A also enhanced TRAIL sensitivity in cancer cells through the up-regulation of DR4 and 

DR5 [96,97].

6.1.2—The second group of compounds is those agents that are being developed as cancer 

therapeutics with ability to increase DR4 and DR5 expression. For example, Nutlin-3, a 

small molecule inhibitor of MDM2, can increase DR5 expression and sensitize cancer cells 

to TRAIL-induced cell death [98]. This induces TRAIL-mediated apoptosis in cancer cells 

expressing wild-type p53. The ether phospholipid edelfosine, an asynthetic anti-tumor 

alkyllysophospholipid, can up-regulate DR5 to enhance rhTRAIL-induced apoptosis [99]. It 

has been shown that DR5 expression can be regulated by the Notch1 signaling pathway 

through Sp1-dependent activation of DR5 transcription [100]. Therefore, modulation of this 

pathway impacts TRAIL-induced apoptosis. Indeed, GW280264X, an inhibitor for a 

metalloproteinase needed for activation of the Notch1 pathway by cleavage, was able to 

increase DR5 expression and subsequently sensitize glioblastoma cells to TRAIL-induced 

apoptosis [100]. Suppression of heat shock protein 70 (HSP70) has also been shown to 

induce TRAIL-mediated apoptosis by increasing DR4 and DR5 expression [101]. Similar to 

HSP70 inhibition, the HSP90 inhibitor NVP-AUY922 was shown to overcome TRAIL 

resistance through dephosphorylating JAK2 and STAT3 and decreasing Mcl-1, which 

triggers the release of cytochrome c [102]. Another agent, Capsazepin, a capsaicin 
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antagonist, was shown to sensitize colon cancer cells to TRAIL by inducing DR4 and DR5 

via the ROS/JNK/CHOP pathway [103]. The SIRT1 inhibitor Amurensin G also induced 

DR5 expression, resulting in enhanced TRAIL sensitivity in TRAIL-resistant human 

leukemic K562 cells [104]. The small molecule ATP synthase inhibitor Oligomycin A 

(OMA) triggers the ER stress signaling pathway [105]. OMA induces the inositol-requiring 

enzyme 1 (IRE1) signaling pathway, resulting in the splicing of X-binding protein 1 (XBP1) 

and increasing expression of CHOP, where CHOP can bind to the DR5 promoter, thus 

enhancing TRAIL-mediated apoptosis [105]. In addition, the sphingosine kinase 2 inhibitor 

ABC294640 has been shown to induce DR4 and DR5 expression to enhance apoptosis by 

TRAIL in lung cancer cells [106].

6.1.3—The third group of compounds is some natural products that can activate the TRAIL 

pathway. There are many natural compounds that have been shown to activate the TRAIL 

pathway, particularly those that can induce DR5 expression. For example, ginsenoside 

compound K, an active ingredient of ginseng, sensitizes human colon cancer cells to 

TRAIL-induced apoptosis by up-regulation of DR5 through both autophagy-dependent and -

independent mechanisms [107]. Magnolol and polyphenol mixture (PM), a natural product 

derived from Magnolia officinalis, inhibits class I HDACs, leading to epigenetic activation 

of DR5 and thus significant enhancement of TRAIL-mediated apoptosis in non-small lung 

cancer (NSCLC) cells [108]. Chikusetsusaponin IVa butyl ester (CS-IVa-Be), a triterpenoid 

saponin extracted from Acanthopanas gracilistylus W.W.Smith that acts as an IL6R 

antagonist, can sensitize the breast cancer MDA-MB-231 cells to TRAIL-induced apoptosis 

via up-regulation of DR5 [109]. Zyflamend®, a polyherbal preparation, can sensitize tumor 

cells to TRAIL through ROS-CHOP-mediated up-regulation of TRAIL death receptors 

[110]. Medicarpin, a naturally occurring phytoalexin l, can activate the ROS-JNK-CHOP 

pathway and induce DR5 expression, thus sensitizing myeloid leukemia cells to TRAIL-

induced apoptosis [111]. Quercetin, a natural flavonoid, sensitizes lung cancer cells to 

TRAIL by increasing DR5 expression and inhibiting survivin expression [112]. In addition, 

the diterpene triepoxide, triptolide, sensitizes acute myeloid leukemia cells to TRAIL-

induced apoptosis by increasing p53-dependent DR5 expression [113]. It has also shown 

that Wogonin and the structurally related natural flavones apigenin can overcome TRAIL 

resistance by down-regulation of c-FLIP and up-regulation of DR5 [114].

6.2 Up-regulation of TRAIL for inducing cancer cell death

In addition to induce death receptors as approaches to promote apoptosis in cancer cells, 

strategies have also developed to induce TRAIL expression as an approach for cancer 

therapies. TRAIL can be regulated by both transcriptional and post-translational 

mechanisms [115]. It has been shown that TRAIL is induced by retinoids and HDACis in 

leukemia cells, and that induction of TRAIL is the underlying mechanism by which 

retinoids or HDACIs cause apoptosis [116,117]. In breast cancer cells, TRAIL is induced by 

several anti-cancer agents including TNFα, the DNA methyltransferase inhibitor 5-aza-2′-

deoxycytidine, and the HDAC inhibitor MS275 [118–120]. In addition, TRAIL can be 

positively regulated by p53 [121]. Induction of TRAIL by the different agents sensitizes 

cancer cells to clinically used chemotherapeutic agents. Therefore, it becomes clear that 

identifying small molecule compounds that are capable of increasing TRAIL expression can 
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be a strategy for development of novel cancer therapy. In this regard, screening the NIH 

small molecule compound library led to the identification of the TRAIL-inducible small 

molecule ONC201 (TIC10) [122]. ONC201 is a member of the imipridone small molecule 

family [123]. Mechanistically, ONC201 induces apoptosis by inactivating AKT and ERK-

mediated Foxo3a phosphorylation, resulting in Foxo3a translocation into the nucleus, where 

Fox3a activates TRAIL transcription by directly binding to the TRAIL promoter [122,124]. 

ONC201 has also been shown to induce the unfolded protein response (UPR) and integrated 

stress response (ISR) pathways [125–127]. This leads to increased transcription factor ATF4 

levels, which promotes apoptosis. Further elucidation of this mechanism showed that 

ONC201 induces TRAIL via an ISR pathway involved the transcription factor ATF4, the 

transactivator CHOP, and DR5, where ATF4 or CHOP knockdown diminished ONC201-

induced DR5 expression and apoptosis in cancer cells [125]. A recent study indicated that 

ONC201 is a selective inhibitor for the dopamine D2-like receptors [128]. These studies 

collectively suggest that ONC201 can inhibit cancer cell growth through multiple 

mechanisms.

Through extensive pre-clinical studies, ONC201 was approved by the FDA for phase I 

clinical trials for the treatments of several cancers in 2014. In 2016, the phase I dose-

escalation study was completed and the safety profile of ONC201 was established [129]. 

Based on the safety profile, ONC201 is now in phase II clinical trials for patients with 

different malignancies including glioblastoma, lymphoma, multiple myeloma, and 

endometrial cancer. Importantly, a recent study showed that ONC201 is very effective 

against glioblastoma with a H3.3K27M mutation as two patients with this mutation 

exhibited significant clinical response to ONC201 [130]. Based on these encouraging 

preclinical and phase I studies, 12 phase II clinical trials have been approved by the FDA for 

evaluating ONC201’s anti-cancer activity in patients with various tumors (Table 3).

7 Conclusions

Accumulating evidence indicates that TRAIL and TRAIL receptor agonists offer new 

approaches for targeted therapy, as exampled by ONC201. Acquired resistance has limited 

the effectiveness of TRAIL-based therapy. More work needs to be done to evaluate the 

mechanisms of TRAIL resistance, which will open up new therapeutic approaches that 

restore TRAIL sensitivity. Novel treatment has been proposed to restore TRAIL-induced 

apoptosis through TRAIL and DR5 up-regulation. Significant progress has been made and 

more efficient natural and synthetic agents will be exploited in combination with TRAIL. 

However, several challenges remain in the TRAIL field. For example, TRAIL can selectively 

induce apoptosis of transformed or tumor cells but the mechanisms of TRAIL insensitivity 

in normal cells are still not fully understood. Therefore, understanding the mechanism of 

TRAIL resistance is still a primary focus in the field. Furthermore, it is known that TRAIL 

can induce tumor metastasis and activate survival pathways [131–134], but the detailed 

function of the TRAIL pathway in tumor metastasis and resistance is not fully understood. 

Thus, it is conceivable that understanding these issues will help develop TRAIL-based 

therapy as a novel anti-cancer agent for the treatment of human cancer.
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Figure 1. 
The TRAIL apoptosis pathway. In response to TRAIL stimulation, FADD, caspase-8/10 and 

c-FLIP are recruited to death receptors DR4 and DR5 to form the death-inducing signaling 

complex (DISC), which triggers apoptosis. DcR1, DcR2 and osteoprotegerin are three decoy 

receptors. DcR1 lacks intracellular domain while DcR2 contains truncated death domain. 

Osteoprotegerin is a soluble decoy receptor.

Yuan et al. Page 21

Cancer Metastasis Rev. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yuan et al. Page 22

Ta
b

le
 1

C
om

pl
et

ed
 c

lin
ic

al
 tr

ia
ls

 o
f 

ag
en

ts
 th

at
 ta

rg
et

 th
e 

T
R

A
IL

 c
or

e 
ap

op
to

tic
 p

at
hw

ay

T
he

ra
pe

ut
ic

 a
ge

nt
s

In
 c

om
bi

na
ti

on
 w

it
h

T
ri

al
 t

yp
e 

an
d 

tu
m

or
E

nr
ol

lm
en

t
P

ri
m

ar
y 

en
dp

oi
nt

T
he

ra
py

 e
ff

ec
t

R
ef

er
en

ce

C
PT

T
ha

lid
om

id
e+

D
ex

am
et

ha
so

ne
Ph

as
e 

2;
 m

ye
lo

m
a

71
O

R
R

B
en

ef
it

C
hi

C
T

R
-T

R
C

-1
10

01
62

5 
[1

35
]

C
PT

T
ha

lid
om

id
e

Ph
as

e 
2;

 m
ye

lo
m

a
43

Sa
fe

ty
2 

C
R

, 7
 P

R
C

hi
C

T
R

-O
N

C
-1

20
02

06
 [

13
6]

D
ul

an
er

m
in

R
itu

xi
m

ab
Ph

as
e 

1b
/2

; l
ym

ph
om

a
72

Sa
fe

ty
N

o 
be

ne
fi

t
N

C
T

00
40

07
64

 [
13

7]

D
ul

an
er

m
in

m
FO

L
FO

X
6+

B
ev

ac
iz

um
ab

Ph
as

e 
1b

; c
ol

or
ec

ta
l c

an
ce

r
23

Sa
fe

ty
13

 P
R

, 7
 S

D
N

C
T

00
87

37
56

 [
13

8]

D
ul

an
er

m
in

Ph
as

e 
1a

; c
an

ce
r

72
B

io
m

ar
ke

rs
N

R
[1

39
]

D
ul

an
er

m
in

Pa
cl

ita
xe

l
C

ar
bo

pl
at

in
B

ev
ac

iz
um

ab

Ph
as

e 
2;

 N
SC

L
C

21
3

O
R

R
1 

C
R

, 1
3 

PR
N

C
T

00
50

86
25

 [
14

0]

D
ul

an
er

m
in

Pa
cl

ita
xe

l
C

ar
bo

pl
at

in
B

ev
ac

iz
um

ab

Ph
as

e 
1b

; N
SC

L
C

24
Sa

fe
ty

N
R

N
C

T
00

50
86

25
 [

14
1]

D
ul

an
er

m
in

Ph
as

e 
1;

 c
an

ce
r

71
Sa

fe
ty

N
R

[1
42

]

D
ul

an
er

m
in

C
am

pt
os

ar
/E

rb
itu

x
Fo

lf
ir

i
B

ev
ac

iz
um

ab

Ph
as

e 
1b

; c
ol

or
et

al
 c

an
ce

r
42

Sa
fe

ty
N

R
N

C
T

00
67

13
72

T
ig

at
uz

um
ab

Ph
as

e 
1;

 c
ol

or
et

al
 c

an
ce

r
19

D
is

tr
ib

ut
io

n
1 

PR
, 8

 S
D

N
C

T
01

22
09

99
 [

14
3]

T
ig

at
uz

um
ab

So
ra

fe
ni

b
Ph

as
e 

2;
 li

ve
r 

ca
nc

er
16

3
E

ff
ic

ac
y

N
o 

be
ne

fi
t

N
C

T
01

03
32

40
 [

14
4]

T
ig

at
uz

um
ab

Pa
cl

ita
xe

l
Ph

as
e 

2;
 T

N
B

C
64

O
R

R
3 

C
R

, 8
 P

R
, 1

1S
D

N
C

T
01

30
78

91
 [

76
]

T
ig

at
uz

um
ab

G
em

ci
ta

bi
ne

Ph
as

e 
2;

 p
an

cr
ea

tic
 c

an
ce

r
62

E
ff

ic
ac

y
B

en
ef

it
[1

45
]

T
ig

at
uz

um
ab

C
ar

bo
pl

at
in

/p
ac

lit
ax

el
Ph

as
e 

2;
 N

SC
L

C
97

E
ff

ic
ac

y
N

o 
be

ne
fi

t
N

C
T

00
99

17
96

 [
14

6]

T
ig

at
uz

um
ab

Ph
as

e 
1;

 c
an

ce
r

17
M

T
D

7 
SD

[1
47

]

M
ap

at
um

um
ab

So
ra

fe
ni

b
Ph

as
e 

2;
 li

ve
r 

ca
nc

er
10

1
E

ff
ic

ac
y

N
o 

be
ne

fi
t

N
C

T
01

25
86

08
 [

14
8]

M
ap

at
um

um
ab

Pa
cl

ita
xe

l
C

ar
bo

pl
at

in
Ph

as
e 

2;
 N

SC
L

C
10

9
E

ff
ic

ac
y

N
o 

be
ne

fi
t

N
C

T
00

58
38

30
 [

14
9]

M
ap

at
um

um
ab

Ph
as

e 
1b

/2
; N

H
L

40
E

ff
ic

ac
y

2 
C

R
, 1

 P
R

N
C

T
00

09
48

48
 [

15
0]

M
ap

at
um

um
ab

Ph
as

e 
2;

 c
ol

or
ec

ta
l c

an
ce

r
38

E
ff

ic
ac

y
12

 S
D

[1
51

]

M
ap

at
um

um
ab

G
em

ci
ta

bi
ne

C
is

pl
at

in
Ph

as
e 

1;
 s

ol
id

 tu
m

or
49

Sa
fe

ty
12

 P
R

, 2
5 

SD
N

C
T

01
08

83
47

 [
15

2]

M
ap

at
um

um
ab

Ph
as

e 
1;

 s
ol

id
 tu

m
or

41
M

T
D

12
 S

D
[1

53
]

Cancer Metastasis Rev. Author manuscript; available in PMC 2019 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yuan et al. Page 23

T
he

ra
pe

ut
ic

 a
ge

nt
s

In
 c

om
bi

na
ti

on
 w

it
h

T
ri

al
 t

yp
e 

an
d 

tu
m

or
E

nr
ol

lm
en

t
P

ri
m

ar
y 

en
dp

oi
nt

T
he

ra
py

 e
ff

ec
t

R
ef

er
en

ce

M
ap

at
um

um
ab

Pa
cl

ita
xe

l
C

ar
bo

pl
at

in
Ph

as
e 

1;
 s

ol
id

 tu
m

or
27

Sa
fe

ty
5 

PR
, 1

2 
SD

[1
54

]

M
ap

at
um

um
ab

Ph
as

e 
2;

 N
SC

L
C

32
E

ff
ic

ac
y

9 
SD

N
C

T
00

09
29

24
 [

15
5]

M
ap

at
um

um
ab

Ph
as

e 
1;

 s
ol

id
 tu

m
or

49
Sa

fe
ty

19
 S

D
[1

56
]

M
ap

at
um

um
ab

B
or

te
zo

m
ib

Ph
as

e 
2;

 M
ye

lo
m

a
10

5
Sa

fe
ty

N
R

N
C

T
00

31
57

57

M
ap

at
um

um
ab

So
ra

fe
ni

b
Ph

as
e 

1b
; L

iv
er

 c
an

ce
r

23
Sa

fe
ty

N
R

N
C

T
00

71
28

55

M
ap

at
um

um
ab

C
is

pl
at

in
+

R
ad

io
th

er
ap

y
Ph

as
e 

1b
/2

; C
er

vi
ca

l c
an

ce
r

9
Sa

fe
ty

N
R

N
C

T
01

08
83

47

C
on

at
um

um
ab

Pa
cl

ita
xe

l
C

ar
bo

pl
at

in
Ph

as
e 

2;
 N

SC
L

C
17

2
PF

S
N

o 
be

ne
fi

t
N

C
T

00
53

40
27

 [
15

7]

C
on

at
um

um
ab

/G
an

itu
m

ab
FO

L
FI

R
I

Ph
as

e 
2;

 c
ol

or
ec

ta
l c

an
ce

r
15

5
PF

S
B

en
ef

it
N

C
T

00
81

36
05

 [
15

8]

C
on

at
um

um
ab

m
FO

L
FO

X
6+

B
ev

ac
iz

um
ab

Ph
as

e 
1b

/2
; c

ol
or

ec
ta

l c
an

ce
r

20
2

PF
S

N
o 

be
ne

fi
t

N
C

T
00

62
56

51
 [

15
9]

C
on

at
um

um
ab

/G
an

itu
m

ab
G

em
ci

ta
bi

ne
Ph

as
e 

2;
 p

an
cr

ea
tic

 c
an

ce
r

12
5

O
S

B
en

ef
it

N
C

T
00

63
05

52
 [

16
0]

C
on

at
um

um
ab

D
ox

or
ub

ic
in

Ph
as

e 
1b

/2
; s

of
t t

is
su

e 
sa

rc
om

a
13

4
PF

S
N

o 
be

ne
fi

t
N

C
T

00
62

67
04

 [
16

1]

C
on

at
um

um
ab

Ph
as

e 
1;

 s
ol

id
 tu

m
or

18
D

LT
2 

SD
[1

62
]

C
on

at
um

um
ab

Ph
as

e 
1;

 s
ol

id
 tu

m
or

37
Sa

fe
ty

1 
PR

, 1
5 

SD
[1

63
]

C
on

at
um

um
ab

Pa
ni

tu
m

um
ab

Ph
as

e 
1b

/2
; C

ol
or

ec
ta

l c
an

ce
r

53
Sa

fe
ty

N
R

N
C

T
00

63
07

86

C
on

at
um

um
ab

B
ir

in
ap

an
t

Ph
as

e 
1b

; O
va

ri
an

 c
an

ce
r

27
Sa

fe
ty

N
R

N
C

T
01

94
01

72

TA
S2

66
Ph

as
e 

1;
 s

ol
id

 tu
m

or
4

Sa
fe

ty
N

R
[1

64
]

O
N

C
20

1
Ph

as
e 

2;
 g

lio
bl

as
to

m
a

17
E

ff
ic

ac
y

B
en

ef
it

[1
30

]

O
N

C
20

1
Ph

as
e 

1;
 s

ol
id

 tu
m

or
28

Sa
fe

ty
B

en
ef

it
[1

29
]

A
bb

re
vi

at
io

ns
: C

PT
, C

ir
cu

la
rl

y 
pe

rm
ut

ed
 T

R
A

IL
; N

R
, n

ot
 r

ep
or

te
d;

 M
T

D
, m

ax
im

um
 to

le
ra

te
d 

do
se

; O
R

R
, o

bj
ec

tiv
e 

re
sp

on
se

 r
at

e;
 D

LT
, d

os
e 

lim
iti

ng
 to

xi
ci

ty
; T

N
B

C
, t

ri
pl

e-
ne

ga
tiv

e 
br

ea
st

 c
an

ce
r;

 N
H

L
, 

N
on

-H
od

gk
in

’s
 ly

m
ph

om
a;

 N
SC

L
C

, n
on

-s
m

al
l c

el
l l

un
g 

ca
nc

er
; C

R
, c

om
pl

et
e 

re
sp

on
se

; P
R

, p
ar

tia
l r

es
po

ns
e;

 S
D

, s
ta

bl
e 

di
se

as
e.

Cancer Metastasis Rev. Author manuscript; available in PMC 2019 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yuan et al. Page 24

Table 2

The agents that increase the expression of TRAIL and its receptors DR4 and DR5 lead to the activation of the 

TRAIL apoptosis pathway.

Therapeutic agents Cancer type Mechanism(s) Reference

Chemotherapeutics

Doxorubicin Ovarian terato-carcinoma Inducing DR5 [85]

Cisplatin Glioblastoma Inducing DR5 [93]

Platinum(IV) LA-12 Colon cancer Activation of mitochondrial pathway [94]

Carboplatin, pemetrexed and TRAIL(CPT) Pleural mesothelioma Inducing DR4 and DR5 [95]

Trichostatin A(TSA) Gastric cancer Inducing DR5 [96,97]

Natural products

Ginsenoside compound K (CK) Colon cancer Inducing DR5 [107]

Magnolol and polyphenol mixture NSCLC Inducing DR5 [108]

Chikusetsusaponin IVa butyl ester (CS-IVa-Be) Breast cancer Inducing DR5 [109]

Zyflamend Pancreatic cancer Inducing ROS, CHOP and DR5 [110]

Medicarpin(Med) Myeloid leukemia cancer Inducing ROS, CHOP and DR5 [111]

Quercetin Lung cancer Induction of DR5 and inhibition of survivin [112]

Triptolide Leukemia Decreasing XIAP [113]

Wogonin Solid tumors Inducing DR5, decreasing c-FLIP [114]

Other agents

Nutlin-3 Colon cancer Inducing DR5 [98]

Edelfosine Gastric cancer Inducing DR5 [99]

GW280264X Glioblastoma Inducing DR5 [100]

NVP-AUY922 Colorectal cancer Suppressing the JAK2-STAT3-Mcl-1 pathway [102]

Capsazepin Colon cancer Inducing DR4 and DR5 [103]

Amurensin G Leukemia Inducing DR5 [104]

Oligomycin A Cervical Inducing DR5 [105]

ABC294640 Lung cancer Inducing DR4 and DR5 [106]

ONC201 Solid tumors Inducing TRAIL and DR5 and ER stress [122,125,126]
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Table 3

Ongoing clinical trials of TRAIL-based therapies and ONC201

Therapeutic agents In combination with Trial type and tumor Reference

ABBV-621 Solid tumor/Hematologic malignancies NCT03082209

DS8273 Solid tumor NCT02076451

ONC201 Glioma NCT03134131

ONC201 Glioblastoma NCT02525692

ONC201 Glioma NCT03295396

ONC201 NHL NCT02420795

ONC201 Leukemias NCT02392572

ONC201 Myeloma NCT02863991

ONC201 Solid tumor/Myeloma NCT02609230

ONC201 Solid tumor NCT02324621

ONC201 Solid tumor NCT02250781

ONC201 Neuroendocrine tumor NCT03034200

ONC201 Breast cancer/Endometrial carcinoma NCT03394027

ONC201 Endometrial cancer NCT03099499

Abbreviations: CPT, Circularly permuted TRAIL; NR, not reported; MTD, maximum tolerated dose; ORR, objective response rate; DLT, dose 
limiting toxicity; TNBC, triple-negative breast cancer; NHL, non-Hodgkin’s lymphoma; NSCLC, non-small cell lung cancer; CR, complete 
response; PR, partial response; SD, stable disease.
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