Skip to main content

Advertisement

Log in

Immunotherapy of melanoma: Present options and future promises

  • Clinical
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Metastatic melanoma is notorious for its immune evasion and resistance to conventional chemotherapy. The recent success of ipilimumab, a human monoclonal antibody against cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), in increasing the median survival time and stabilizing the disease progression renewed, hopes in treatment for melanoma. Currently, ipilimumab and high-dose interleukin-2 (IL-2; Aldesleukin) are approved as monotherapies for the treatment of patients with unresectable advanced melanoma, and pegylated interferon-α2b (p-IFN-α2b) is approved as an adjuvant for the treatment of patients with surgically resected high-risk melanoma. The present review describes the currently approved immune-modulators and the promising immune-based interventions that are currently in clinical trials. We present the four commonly used strategies to boost immune responses against the tumors; monoclonal antibodies, cytokines, cancer vaccines, and adoptive T cell transfer. The corresponding lists of ongoing clinical trials include details of the trial phase, target patients, intervention details, status of the study, and expected date of completion. Further, our review discusses the challenges faced by immunotherapy and the various strategies adopted to overcome them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Miller, A. J., & Mihm, M. C., Jr. (2006). Melanoma. New England Journal of Medicine, 355(1), 51–65. doi:10.1056/NEJMra052166.

    Article  CAS  PubMed  Google Scholar 

  2. Siegel, R., Naishadham, D., & Jemal, A. (2013). Cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 63(1), 11–30. doi:10.3322/caac.21166.

    Google Scholar 

  3. Cheng, Y., Zhang, G., & Li, G. (2013). Targeting MAPK pathway in melanoma therapy. Cancer and Metastasis Reviews, 32(3–4), 567–584. doi:10.1007/s10555-013-9433-9.

    Article  CAS  PubMed  Google Scholar 

  4. Saranga-Perry, V., Ambe, C., Zager, J. S., & Kudchadkar, R. R. (2014). Recent developments in the medical and surgical treatment of melanoma. CA: A Cancer Journal for Clinicians, 64(3), 171–185. doi:10.3322/caac.21224.

    Google Scholar 

  5. Finn, L., Markovic, S. N., & Joseph, R. W. (2012). Therapy for metastatic melanoma: the past, present, and future. BMC Medicine, 10, 23. doi:10.1186/1741-7015-10-23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hodi, F. S., Oble, D. A., Drappatz, J., Velazquez, E. F., Ramaiya, N., Ramakrishna, N., et al. (2008). CTLA-4 blockade with ipilimumab induces significant clinical benefit in a female with melanoma metastases to the CNS. Nature Clinical Practice Oncology, 5(9), 557–561. doi:10.1038/ncponc1183.

    Article  CAS  PubMed  Google Scholar 

  7. Hodi, F. S., O’Day, S. J., McDermott, D. F., Weber, R. W., Sosman, J. A., Haanen, J. B., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. New England Journal of Medicine, 363(8), 711–723. doi:10.1056/NEJMoa1003466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Robert, C., Thomas, L., Bondarenko, I., O’Day, S., Weber, J., Garbe, C., et al. (2011). Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. New England Journal of Medicine, 364(26), 2517–2526. doi:10.1056/NEJMoa1104621.

    Article  CAS  PubMed  Google Scholar 

  9. Postow, M. A., Luke, J. J., Bluth, M. J., Ramaiya, N., Panageas, K. S., Lawrence, D. P., et al. (2013). Ipilimumab for patients with advanced mucosal melanoma. The Oncologist, 18(6), 726–732. doi:10.1634/theoncologist. 2012-0464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rosenberg, S. A. (2014). IL-2: the first effective immunotherapy for human cancer. Journal of Immunology, 192(12), 5451–5458. doi:10.4049/jimmunol.1490019.

    Article  CAS  Google Scholar 

  11. Atkins, M. B., Lotze, M. T., Dutcher, J. P., Fisher, R. I., Weiss, G., Margolin, K., et al. (1999). High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: Analysis of 270 patients treated between 1985 and 1993. Journal of Clinical Oncology, 17(7), 2105–2116.

    CAS  PubMed  Google Scholar 

  12. Kaufman, H. L., Kirkwood, J. M., Hodi, F. S., Agarwala, S., Amatruda, T., Bines, S. D., et al. (2013). The society for immunotherapy of cancer consensus statement on tumour immunotherapy for the treatment of cutaneous melanoma. Nature Reviews. Clinical Oncology, 10(10), 588–598. doi:10.1038/nrclinonc.2013.153.

    Article  CAS  PubMed  Google Scholar 

  13. Okuyama, S., Gonzalez, R., & Lewis, K. D. (2010). Pegylated interferon alpha-2b as adjuvant treatment of Stage III malignant melanoma: an evidence-based review. Core Evidence, 5, 39–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kirkwood, J. M., & Ernstoff, M. S. (1984). Interferons in the treatment of human cancer. Journal of Clinical Oncology, 2(4), 336–352.

    CAS  PubMed  Google Scholar 

  15. Tarhini, A. A., Gogas, H., & Kirkwood, J. M. (2012). IFN-alpha in the treatment of melanoma. Journal of Immunology, 189(8), 3789–3793. doi:10.4049/jimmunol.1290060.

    Article  CAS  Google Scholar 

  16. Herndon, T. M., Demko, S. G., Jiang, X., He, K., Gootenberg, J. E., Cohen, M. H., et al. (2012). U.S. food and drug administration approval: peginterferon-alfa-2b for the adjuvant treatment of patients with melanoma. The Oncologist, 17(10), 1323–1328. doi:10.1634/theoncologist. 2012-0123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weber, J. (2007). Review: anti-CTLA-4 antibody ipilimumab: case studies of clinical response and immune-related adverse events. The Oncologist, 12(7), 864–872. doi:10.1634/theoncologist.12-7-864.

    Article  CAS  PubMed  Google Scholar 

  18. Dariavach, P., Mattei, M. G., Golstein, P., & Lefranc, M. P. (1988). Human Ig superfamily CTLA-4 gene: Chromosomal localization and identity of protein sequence between murine and human CTLA-4 cytoplasmic domains. European Journal of Immunology, 18(12), 1901–1905. doi:10.1002/eji.1830181206.

    Article  CAS  PubMed  Google Scholar 

  19. Karandikar, N. J., Vanderlugt, C. L., Walunas, T. L., Miller, S. D., & Bluestone, J. A. (1996). CTLA-4: a negative regulator of autoimmune disease. Journal of Experimental Medicine, 184(2), 783–788.

    Article  CAS  PubMed  Google Scholar 

  20. Walunas, T. L., Bakker, C. Y., & Bluestone, J. A. (1996). CTLA-4 ligation blocks CD28-dependent T cell activation. Journal of Experimental Medicine, 183(6), 2541–2550.

    Article  CAS  PubMed  Google Scholar 

  21. Phan, G. Q., Yang, J. C., Sherry, R. M., Hwu, P., Topalian, S. L., Schwartzentruber, D. J., et al. (2003). Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8372–8377. doi:10.1073/pnas.1533209100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wolchok, J. D., Kluger, H., Callahan, M. K., Postow, M. A., Rizvi, N. A., Lesokhin, A. M., et al. (2013). Nivolumab plus ipilimumab in advanced melanoma. New England Journal of Medicine, 369(2), 122–133. doi:10.1056/NEJMoa1302369.

    Article  CAS  PubMed  Google Scholar 

  23. Kyi, C., & Postow, M. A. (2014). Checkpoint blocking antibodies in cancer immunotherapy. FEBS Letters, 588(2), 368–376. doi:10.1016/j.febslet.2013.10.015.

    Article  CAS  PubMed  Google Scholar 

  24. McDermott, D. F., & Atkins, M. B. (2013). PD-1 as a potential target in cancer therapy. Cancer Medicine, 2(5), 662–673. doi:10.1002/cam4.106.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Merelli, B., Massi, D., Cattaneo, L., & Mandala, M. (2014). Targeting the PD1/PD-L1 axis in melanoma: Biological rationale, clinical challenges and opportunities. Critical Reviews in Oncology/Hematology, 89(1), 140–165. doi:10.1016/j.critrevonc.2013.08.002.

    Article  PubMed  Google Scholar 

  26. Zou, W., & Chen, L. (2008). Inhibitory B7-family molecules in the tumour microenvironment. Nature Reviews Immunology, 8(6), 467–477. doi:10.1038/nri2326.

    Article  CAS  PubMed  Google Scholar 

  27. Inman, B. A., Sebo, T. J., Frigola, X., Dong, H., Bergstralh, E. J., Frank, I., et al. (2007). PD-L1 (B7-H1) expression by urothelial carcinoma of the bladder and BCG-induced granulomata: Associations with localized stage progression. Cancer, 109(8), 1499–1505. doi:10.1002/cncr.22588.

    Article  CAS  PubMed  Google Scholar 

  28. Thompson, R. H., Gillett, M. D., Cheville, J. C., Lohse, C. M., Dong, H., Webster, W. S., et al. (2004). Costimulatory B7-H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target. Proceedings of the National Academy of Sciences of the United States of America, 101(49), 17174–17179. doi:10.1073/pnas.0406351101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nomi, T., Sho, M., Akahori, T., Hamada, K., Kubo, A., Kanehiro, H., et al. (2007). Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clinical Cancer Research, 13(7), 2151–2157. doi:10.1158/1078-0432.CCR-06-2746.

    Article  CAS  PubMed  Google Scholar 

  30. Hamanishi, J., Mandai, M., Iwasaki, M., Okazaki, T., Tanaka, Y., Yamaguchi, K., et al. (2007). Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 3360–3365. doi:10.1073/pnas.0611533104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wintterle, S., Schreiner, B., Mitsdoerffer, M., Schneider, D., Chen, L., Meyermann, R., et al. (2003). Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Research, 63(21), 7462–7467.

    CAS  PubMed  Google Scholar 

  32. Topalian, S. L., Sznol, M., McDermott, D. F., Kluger, H. M., Carvajal, R. D., Sharfman, W. H., et al. (2014). Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. Journal of Clinical Oncology, 32(10), 1020–1030. doi:10.1200/JCO.2013.53.0105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Robert, C., Ribas, A., Wolchok, J. D., Hodi, F. S., Hamid, O., Kefford, R., et al. (2014). Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet, 384(9948), 1109–1117. doi:10.1016/S0140-6736(14)60958-2.

    Article  CAS  PubMed  Google Scholar 

  34. Thomas, L. J., He, L. Z., Marsh, H., & Keler, T. (2014). Targeting human CD27 with an agonist antibody stimulates T-cell activation and antitumor immunity. Oncoimmunology, 3(1), e27255. doi:10.4161/onci.27255.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Denoeud, J., & Moser, M. (2011). Role of CD27/CD70 pathway of activation in immunity and tolerance. Journal of Leukocyte Biology, 89(2), 195–203. doi:10.1189/jlb.0610351.

    Article  CAS  PubMed  Google Scholar 

  36. Schaer, D. A., Hirschhorn-Cymerman, D., & Wolchok, J. D. (2014). Targeting tumor-necrosis factor receptor pathways for tumor immunotherapy. Journal of Immunotherapy Cancer, 2, 7. doi:10.1186/2051-1426-2-7.

    Article  Google Scholar 

  37. Vitale, L. A., He, L. Z., Thomas, L. J., Widger, J., Weidlick, J., Crocker, A., et al. (2012). Development of a human monoclonal antibody for potential therapy of CD27-expressing lymphoma and leukemia. Clinical Cancer Research, 18(14), 3812–3821. doi:10.1158/1078-0432.CCR-11-3308.

    Article  CAS  PubMed  Google Scholar 

  38. Greenwald, R. J., Freeman, G. J., & Sharpe, A. H. (2005). The B7 family revisited. Annual Review of Immunology, 23, 515–548. doi:10.1146/annurev.immunol.23.021704.115611.

    Article  PubMed  Google Scholar 

  39. Leitner, J., Klauser, C., Pickl, W. F., Stockl, J., Majdic, O., Bardet, A. F., et al. (2009). B7-H3 is a potent inhibitor of human T-cell activation: No evidence for B7-H3 and TREML2 interaction. European Journal of Immunology, 39(7), 1754–1764. doi:10.1002/eji.200839028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chapoval, A. I., Ni, J., Lau, J. S., Wilcox, R. A., Flies, D. B., Liu, D., et al. (2001). B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nature Immunology, 2(3), 269–274. doi:10.1038/85339.

    Article  CAS  PubMed  Google Scholar 

  41. Loo, D., Alderson, R. F., Chen, F. Z., Huang, L., Zhang, W., Gorlatov, S., et al. (2012). Development of an Fc-enhanced anti-B7-H3 monoclonal antibody with potent antitumor activity. Clinical Cancer Research, 18(14), 3834–3845. doi:10.1158/1078-0432.CCR-12-0715.

    Article  CAS  PubMed  Google Scholar 

  42. Daleke, D. L. (2003). Regulation of transbilayer plasma membrane phospholipid asymmetry. Journal of Lipid Research, 44(2), 233–242. doi:10.1194/jlr. R200019-JLR200.

    Article  CAS  PubMed  Google Scholar 

  43. Lang, F., Gulbins, E., Lang, P. A., Zappulla, D., & Foller, M. (2010). Ceramide in suicidal death of erythrocytes. Cellular Physiology and Biochemistry, 26(1), 21–28. doi:10.1159/000315102.

    Article  CAS  PubMed  Google Scholar 

  44. Lang, F., & Qadri, S. M. (2012). Mechanisms and significance of eryptosis, the suicidal death of erythrocytes. Blood Purification, 33(1–3), 125–130. doi:10.1159/000334163.

    Article  PubMed  Google Scholar 

  45. Fadok, V. A., Bratton, D. L., Konowal, A., Freed, P. W., Westcott, J. Y., & Henson, P. M. (1998). Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. Journal of Clinical Investigation, 101(4), 890–898. doi:10.1172/JCI1112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gerber, D. E., Stopeck, A. T., Wong, L., Rosen, L. S., Thorpe, P. E., Shan, J. S., et al. (2011). Phase I safety and pharmacokinetic study of bavituximab, a chimeric phosphatidylserine-targeting monoclonal antibody, in patients with advanced solid tumors. Clinical Cancer Research, 17(21), 6888–6896. doi:10.1158/1078-0432.CCR-11-1074.

    Article  CAS  PubMed  Google Scholar 

  47. Kaufman, H. L., Ruby, C. E., Hughes, T., & Slingluff, C. L., Jr. (2014). Current status of granulocyte-macrophage colony-stimulating factor in the immunotherapy of melanoma. Journal of Immunotherapy Cancer, 2, 11. doi:10.1186/2051-1426-2-11.

    Article  Google Scholar 

  48. Shi, Y., Liu, C. H., Roberts, A. I., Das, J., Xu, G., Ren, G., et al. (2006). Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don’t know. Cell Research, 16(2), 126–133. doi:10.1038/sj.cr.7310017.

    Article  CAS  PubMed  Google Scholar 

  49. Matzinger, P. (2002). The danger model: a renewed sense of self. Science, 296(5566), 301–305. doi:10.1126/science.1071059.

    Article  CAS  PubMed  Google Scholar 

  50. Traversari, C., van der Bruggen, P., Luescher, I. F., Lurquin, C., Chomez, P., Van Pel, A., et al. (1992). A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. Journal of Experimental Medicine, 176(5), 1453–1457.

    Article  CAS  PubMed  Google Scholar 

  51. van der Bruggen, P., Traversari, C., Chomez, P., Lurquin, C., De Plaen, E., Van den Eynde, B., et al. (1991). A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science, 254(5038), 1643–1647.

    Article  PubMed  Google Scholar 

  52. Aranda, F., Vacchelli, E., Eggermont, A., Galon, J., Sautes-Fridman, C., Tartour, E., et al. (2013). Trial watch: Peptide vaccines in cancer therapy. Oncoimmunology, 2(12), e26621. doi:10.4161/onci.26621.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Murakami, T., & Sunada, Y. (2011). Plasmid DNA gene therapy by electroporation: Principles and recent advances. Current Gene Therapy, 11(6), 447–456.

    Article  CAS  PubMed  Google Scholar 

  54. USDA licenses DNA vaccine for treatment of melanoma in dogs (2010). J Am Vet Med Assoc, 236(5), 495, doi: 10.2460/javma.236.5.488.

  55. Bergman, P. J., Camps-Palau, M. A., McKnight, J. A., Leibman, N. F., Craft, D. M., Leung, C., et al. (2006). Development of a xenogeneic DNA vaccine program for canine malignant melanoma at the Animal Medical Center. Vaccine, 24(21), 4582–4585. doi:10.1016/j.vaccine.2005.08.027.

    Article  CAS  PubMed  Google Scholar 

  56. Bergman, P. J., McKnight, J., Novosad, A., Charney, S., Farrelly, J., Craft, D., et al. (2003). Long-term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase: a phase I trial. Clinical Cancer Research, 9(4), 1284–1290.

    CAS  PubMed  Google Scholar 

  57. Palucka, K., & Banchereau, J. (2012). Cancer immunotherapy via dendritic cells. Nature Reviews Cancer, 12(4), 265–277. doi:10.1038/nrc3258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. El Marsafy, S., Bagot, M., Bensussan, A., & Mauviel, A. (2009). Dendritic cells in the skin—Potential use for melanoma treatment. Pigment Cell & Melanoma Research, 22(1), 30–41. doi:10.1111/j.1755-148X.2008.00532.x.

    Article  Google Scholar 

  59. Radford, K. J., Tullett, K. M., & Lahoud, M. H. (2014). Dendritic cells and cancer immunotherapy. Current Opinion in Immunology, 27, 26–32. doi:10.1016/j.coi.2014.01.005.

    Article  CAS  PubMed  Google Scholar 

  60. Kobayashi, M., Suzuki, K., Yashi, M., Yuzawa, M., Takayashiki, N., & Morita, T. (2007). Tumor infiltrating dendritic cells predict treatment response to immunotherapy in patients with metastatic renal cell carcinoma. Anticancer Research, 27(2), 1137–1141.

    CAS  PubMed  Google Scholar 

  61. Simonetti, O., Goteri, G., Lucarini, G., Rubini, C., Stramazzotti, D., Lo Muzio, L., et al. (2007). In melanoma changes of immature and mature dendritic cell expression correlate with tumor thickness: an immunohistochemical study. International Journal of Immunopathology and Pharmacology, 20(2), 325–333.

    CAS  PubMed  Google Scholar 

  62. Anguille, S., Smits, E. L., Lion, E., van Tendeloo, V. F., & Berneman, Z. N. (2014). Clinical use of dendritic cells for cancer therapy. Lancet Oncology, 15(7), e257–e267. doi:10.1016/S1470-2045(13)70585-0.

    Article  CAS  PubMed  Google Scholar 

  63. Weber, J., Atkins, M., Hwu, P., Radvanyi, L., Sznol, M., & Yee, C. (2011). White paper on adoptive cell therapy for cancer with tumor-infiltrating lymphocytes: a report of the CTEP subcommittee on adoptive cell therapy. Clinical Cancer Research, 17(7), 1664–1673. doi:10.1158/1078-0432.CCR-10-2272.

    Article  CAS  PubMed  Google Scholar 

  64. Park, T. S., Rosenberg, S. A., & Morgan, R. A. (2011). Treating cancer with genetically engineered T cells. Trends in Biotechnology, 29(11), 550–557. doi:10.1016/j.tibtech.2011.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee, S., & Margolin, K. (2012). Tumor-infiltrating lymphocytes in melanoma. Current Oncology Reports, 14(5), 468–474. doi:10.1007/s11912-012-0257-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Urba, W. J. (2014). At the bench: Adoptive cell therapy for melanoma. Journal of Leukocyte Biology, 95(6), 867–874. doi:10.1189/jlb.0513301.

    Article  PubMed  Google Scholar 

  67. Boni, A., Cogdill, A. P., Dang, P., Udayakumar, D., Njauw, C. N., Sloss, C. M., et al. (2010). Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Research, 70(13), 5213–5219. doi:10.1158/0008-5472.CAN-10-0118.

    Article  CAS  PubMed  Google Scholar 

  68. Wilmott, J. S., Long, G. V., Howle, J. R., Haydu, L. E., Sharma, R. N., Thompson, J. F., et al. (2012). Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clinical Cancer Research, 18(5), 1386–1394. doi:10.1158/1078-0432.CCR-11-2479.

    Article  CAS  PubMed  Google Scholar 

  69. Koya, R. C., Mok, S., Otte, N., Blacketor, K. J., Comin-Anduix, B., Tumeh, P. C., et al. (2012). BRAF inhibitor vemurafenib improves the antitumor activity of adoptive cell immunotherapy. Cancer Research, 72(16), 3928–3937. doi:10.1158/0008-5472.CAN-11-2837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Eggermont, A. M., Suciu, S., Testori, A., Santinami, M., Kruit, W. H., Marsden, J., et al. (2012). Long-term results of the randomized phase III trial EORTC 18991 of adjuvant therapy with pegylated interferon alfa-2b versus observation in resected stage III melanoma. Journal of Clinical Oncology, 30(31), 3810–3818. doi:10.1200/JCO.2011.41.3799.

    Article  CAS  PubMed  Google Scholar 

  71. Kelderman, S., Schumacher, T. N., & Haanen, J. B. (2014). Acquired and intrinsic resistance in cancer immunotherapy. Molecular Oncology. doi:10.1016/j.molonc.2014.07.011.

    PubMed  Google Scholar 

  72. Baitsch, L., Fuertes-Marraco, S. A., Legat, A., Meyer, C., & Speiser, D. E. (2012). The three main stumbling blocks for anticancer T cells. Trends in Immunology, 33(7), 364–372. doi:10.1016/j.it.2012.02.006.

    Article  CAS  PubMed  Google Scholar 

  73. Besedovsky, L., Lange, T., & Born, J. (2012). Sleep and immune function. Pflügers Archiv, 463(1), 121–137. doi:10.1007/s00424-011-1044-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Segerstrom, S. C., & Miller, G. E. (2004). Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychological Bulletin, 130(4), 601–630. doi:10.1037/0033-2909.130.4.601.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kasparian, N. A. (2013). Psychological care for people with melanoma: what, when, why and how? Seminars in Oncology Nursing, 29(3), 214–222. doi:10.1016/j.soncn.2013.06.007.

    Article  PubMed  Google Scholar 

  76. Kasparian, N. A. (2013). Psychological stress and melanoma: are we meeting our patients’ psychological needs? Clinics in Dermatology, 31(1), 41–46. doi:10.1016/j.clindermatol.2011.11.005.

    Article  PubMed  Google Scholar 

  77. Fellner, C. (2012). Ipilimumab (yervoy) prolongs survival in advanced melanoma: Serious side effects and a hefty price tag may limit its use. P T, 37(9), 503–530.

    PubMed  PubMed Central  Google Scholar 

  78. Jonsson, B., & Wilking, N. (2012). Cancer vaccines and immunotherapeutics: Challenges for pricing, reimbursement and market access. Human Vaccin Immunotherapy, 8(9), 1360–1363. doi:10.4161/hv.21921.

    Article  Google Scholar 

  79. Ma, C., & Armstrong, A. W. (2014). Severe adverse events from the treatment of advanced melanoma: a systematic review of severe side effects associated with ipilimumab, vemurafenib, interferon alfa-2b, dacarbazine and interleukin-2. The Journal of Dermatological Treatment, 25(5), 401–408. doi:10.3109/09546634.2013.813897.

    Article  PubMed  Google Scholar 

  80. Amos, S. M., Duong, C. P., Westwood, J. A., Ritchie, D. S., Junghans, R. P., Darcy, P. K., et al. (2011). Autoimmunity associated with immunotherapy of cancer. Blood, 118(3), 499–509. doi:10.1182/blood-2011-01-325266.

    Article  CAS  PubMed  Google Scholar 

  81. Lacouture, M. E., Wolchok, J. D., Yosipovitch, G., Kahler, K. C., Busam, K. J., & Hauschild, A. (2014). Ipilimumab in patients with cancer and the management of dermatologic adverse events. Journal of the American Academy of Dermatology, 71(1), 161–169. doi:10.1016/j.jaad.2014.02.035.

    Article  CAS  PubMed  Google Scholar 

  82. Minkis, K., Garden, B. C., Wu, S., Pulitzer, M. P., & Lacouture, M. E. (2013). The risk of rash associated with ipilimumab in patients with cancer: a systematic review of the literature and meta-analysis. Journal of the American Academy of Dermatology, 69(3), e121–e128. doi:10.1016/j.jaad.2012.12.963.

    Article  CAS  PubMed  Google Scholar 

  83. Bouwhuis, M. G., Ten Hagen, T. L., Suciu, S., & Eggermont, A. M. (2011). Autoimmunity and treatment outcome in melanoma. Current Opinion in Oncology, 23(2), 170–176. doi:10.1097/CCO.0b013e328341edff.

    Article  CAS  PubMed  Google Scholar 

  84. Hinds, A. M., Ahmad, D. S., Muenster, J. E., Berg, Z. M., Lopez, K. T., Holly, J. S., et al. (2014). Ipilimumab-induced colitis: a rare but serious side effect. Endoscopy, 46(Suppl 1 UCTN), E308–E309. doi:10.1055/s-0034-1377209.

    PubMed  Google Scholar 

Download references

Financial support

MB & AR were supported by grants from Canadian Institutes of Health Research (CIHR; CCI-117958, MOP-93810, MOP-110974) and KJM was supported by the Canadian Dermatology Foundation (CDF)

Conflict of interest

KJM is Chief Scientific Officer of Replicel Life Sciences Inc., YZ is a consultant for Merck Pharmaceuticals, Inc; all other authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Rotte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rotte, A., Bhandaru, M., Zhou, Y. et al. Immunotherapy of melanoma: Present options and future promises. Cancer Metastasis Rev 34, 115–128 (2015). https://doi.org/10.1007/s10555-014-9542-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-014-9542-0

Keywords

Navigation