Skip to main content

Advertisement

Log in

Immunological detection of altered signaling molecules involved in melanoma development

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

To understand immune responses to human cancer and develop more effective immunotherapy, human tumor antigens has been isolated using various immunological methods with tumor reactive T cells or antibodies obtained from patients with melanoma. During the process of tumor antigen isolation, various molecules with genetic alterations or over-expression in tumor cells, which may be involved in proliferation, differentiation, or survival of various cancer cells, were identified. In melanoma, abnormal molecules with mutations including β -catenin, CDK4, and BRAF, and molecules with increased expression including Survivin, were immunologically detected. Therefore, immunological isolation of human tumor antigens contributes to the identification of important molecules including altered signaling molecules involved in melanoma formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kawakami Y, Suzuki Y, Shofuda T, Kiniwa Y, Inozume T, Dan K, Sakurai T, Fujita T: T cell immune responses against melanoma and melanocytes in cancer and autoimunity. Pigment Cell Res 13: 163–169, 2000

    Google Scholar 

  2. Rosenberg SA: Progress in human tumour immunology and immunotherapy. Nature 411: 380–384, 2001

    Google Scholar 

  3. van der Bruggen P, Zhang Y, Chaux P, Stroobant V, Panichelli C, Schultz E, Chapiro J, Van den Eynde B, Brasseur F, Boon T: Tumor-specific shared antigenic peptides recognized by human T cells. Immunological Rev 188: 51–64, 2002

    Google Scholar 

  4. Kawakami Y, Fujita T, Matsuzaki Y, Sakurai T, Tsukamoto M, Toda M, Sumimoto H: Identification of human tumor antigens and its implication for diagnosis and treatment of cancer. Cancer Sci 95: 784–791, 2004

    Google Scholar 

  5. Kawakami Y: Human melanoma antigens recognized by CD8+ T cells. In: Stauss H, Kawakami Y, Parmiani G, (eds) Tumor Antigens Recognized by T Cells and Antibodies. Taylor & Francis, London, 2003, pp~47–74

    Google Scholar 

  6. Van der Bruggen P, Traversari C, Chomez P, Lurquin C, DePlaen E, Van Den Eynde B, Knuth A, Boon T: A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254: 1643–1647, 1991

    Google Scholar 

  7. Brichard V, Van Pel A, Wolfel T, Wolfel C, De Plaen E, Lethe B, Coulie P, Boon T: The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 178: 489–495,1993

    Google Scholar 

  8. Kawakami Y, Eliyahu S, Delgaldo CH, Robbins PF, Rivoltini L, Topalian SL, Miki T, Rosenberg SA: Cloning of the Gene Coding for a Shared Human Melanoma Antigen Recognized by Autologous T cells Infiltrating into Tumor. Proc Natl Acad Sci U.S.A. 91: 3515–3519, 1994

    Google Scholar 

  9. Wang R, Wang X, Johnston S, Zeng G, Robbins P, Rosenberg S: Development of a retrovirus-based complementary DNA expression system for the cloning of tumur antigens. Cancer Res 58: 3519–3525, 1998

    Google Scholar 

  10. Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Sakaguchi K, Appella E, Yannelli JR, Adema GJ, Miki T, Rosenberg SA: Identification of a human melanoma antigen recognized by tumor infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci USA 91: 6458–6462, 1994

    Google Scholar 

  11. Kawakami Y, Rosenberg S: Human tumor antigens recognized by T-cells. Immunol Res 16: 313–339, 1997

    Google Scholar 

  12. Wang RF, Wang X, Atwood AC, Topalian SL, Rosenberg SA: Cloning genes encoding MHC class II-restricted antigens: mutated CDC27 as a tumor antigen. Science 284: 1351–1354, 1999

    Google Scholar 

  13. Cox AL, Skipper J, Cehn Y, Henderson RA, Darrow TL, Shabanowitz J, Engelhard VH, Hunt DF, Slingluff CL: Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science 264: 716–719, 1994

    Google Scholar 

  14. Skipper JCA, Hendrickson RC, Gulden PH, Brichard V, Van Pel A, Chen Y, Shabanowitz J, Wolfel T, Slingluff CLJ, Boon T, Hunt DF, Engelhard VH: An HLA-A2-restricted tyrosinase antigen on melanoma cells results from posttranslational modification and suggests a novel pathway for processing of membrane proteins. J Exp Med 183: 527–534, 1996

    Google Scholar 

  15. Sahin U, Tureci O, Schmitt H, Cochlovius B, johannes T, Schmits R, Stenner F, Luo G, Schobert I, Pfreundschuh M: Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci USA 92: 11810–11813, 1995

    Google Scholar 

  16. Old L, Chen Y: New paths in human cancer serology. J Exp Med 187: 1163–1167, 1998

    Google Scholar 

  17. Jager E, Chen YT, Drijfhout JW, Karbach J, Ringhoffer M, Jager D, Arand M, Wada H, Noguchi Y, Stockert E, Old LJ, Knuth A: Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J Exp Med 187: 265–270, 1998

    Google Scholar 

  18. Jager E, Nagata Y, Gnjatic S, Wada H, Stockert E, Karbach J, Dunbar PR, Lee SY, Jungbluth A, Jager D, Arand M, Ritter G, Cerundolo V, Dupont B, Chen YT, Old LJ, Knuth A: Monitoring CD8 T cell responses to NY-ESO-1: correlation of humoral and cellular immune responses. Proc Natl Acad Sci USA 97: 4760–4765, 2000

    Google Scholar 

  19. Kiniwa Y, Fujita T, Akada M, Ito K, Shofuda T, Suzuki Y, Yamamoto A, Saida T, Kawakami Y: Tumor antigens isolated from a patient with vitiligo and T-cell-infiltrated melanoma. Cancer Res 61: 7900–7907, 2001

    Google Scholar 

  20. Yasuda M, Takenoyama M, Obata Y, Sugaya M, So T, Hanagiri T, Sugio K, Yasumoto K: Tumor-infiltrating B lymphocytes as a potential source of identifying tumor antigen in human lung cancer. Cancer Res 62: 1751–1756, 2002

    Google Scholar 

  21. Ishikawa T, Fujita T, Suzuki Y, Okabe S, Yuasa Y, Iwai T, Kawakami Y: Tumor-specific immunological recognition of frameshift-mutated peptides in colon cancer with microsatellite instability. Cancer Res 63: 5564–5572, 2003

    Google Scholar 

  22. Ito K, Fujita T, Akada M, Kiniwa Y, Tsukamoto M, Yamamoto A, Matsuzaki Y, Matsushita M, Asano T, Nakashima J, Tachibana M, Hayakawa M, Ikeda H, Murai M, Kawakami Y: Identification of bladder cancer antigens recognized by IgG antibodies of a patient with metastatic bladder cancer. Int J Cancer 108: 712–724, 2004

    Google Scholar 

  23. Robbins PF, El-Gamil M, Li YF, Kawakami Y, Loftus D, Appella E, Rosenberg SA: A mutated β-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med 183: 1185–1192, 1996

    Google Scholar 

  24. Verma UN, Surabhi RM, Schmaltieg A, Becerra C, Gaynor RB: Small interfering RNAs directed against beta-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Clin Cancer Res 9: 1291–1300, 2003

    Google Scholar 

  25. Rubinfeld B, Robbins P, El-Gamil M, Albert I, Prfiri E, Polakis P: Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science 275: 1790–1792, 1997

    Google Scholar 

  26. Kawakami Y, Wang X, Shofuda T, Sumimoto H, Tupesis J, Fitzgerald E, Rosenberg S: Isolation of a new melanoma antigen, MART-2, containing a mutated epitope recognized by autologous tumor-infiltrating T lymphocytes. J Immunol 166: 2871–2877, 2001

    Google Scholar 

  27. Chamoun Z, Mann RK, Nellen D, von Kessler DP, Bellotto M, Beachy PA, Basler K: Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal. Science 293: 2080–2084, 2001

    Google Scholar 

  28. Cohen MM, Jr.: The hedgehog signaling network. Am J Med Genet 123A: 5–28, 2003

    Google Scholar 

  29. Wolfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Klehmann-Hieb E, De Plaen E, Hankeln T, Meyer Zum Buschenfelde K-H, Beach D: A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269: 1281–1284, 1995

    Google Scholar 

  30. Zuo L, Weger J, Yang Q, Goldstein AM, Tucker MA, Walker GJ, Hayward N, Dracopoli NC: Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 12: 97–99, 1996

    Google Scholar 

  31. Goldstein AM, Struewing JP, Chidambaram A, Fraser MC, Tucker MA: Genotype-phenotype relationships in U.S. melanoma-prone families with CDKN2A and CDK4 mutations. J Natl Cancer Inst 92: 1006–1010, 2000

    Google Scholar 

  32. Robbins PF, El-Gamil M, Li YF, Zeng G, Dudley M, Rosenberg SA: Multiple HLA class II-restricted melanocyte differentiation antigens are recognized by tumor-infiltrating lymphocytes from a patient with melanoma. J Immunol 169: 6036–6047, 2002

    Google Scholar 

  33. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA: Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298: 850–854, 2002

    Google Scholar 

  34. Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA: Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368: 753–756, 1994

    Google Scholar 

  35. Pollock PM, Yu F, Qiu L, Parsons PG, Hayward NK: Evidence for u.v. induction of CDKN2 mutations in melanoma cell lines. Oncogene 11: 663–668, 1995

    Google Scholar 

  36. Kamb A, Gruis NA, Weaver-Feldhaus J, Liu Q, Harshman K, Tavtigian SV, Stockert E, Day RS, Johnson BE, Skolnick MH: A cell cycle regulator potentially involved in genesis of many tumor types. Science 264: 436–440, 1994

    Google Scholar 

  37. Baurain JF, Colau D, van Baren N, Landry C, Martelange V, Vikkula M, Boon T, Coulie PG: High frequency of autologous anti-melanoma CTL directed against an antigen generated by a point mutation in a new helicase gene. J Immunol 164: 6057–6066, 2000

    Google Scholar 

  38. Dubey P, Hendrickson RC, Meredith SC, Siegel CT, Shabanowitz J, Skipper JC, Engelhard VH, Hunt DF, Schreiber H: The immunodominant antigen of an ultraviolet-induced regressor tumor is generated by a somatic point mutation in the DEAD box helicase p68. J Exp Med 185: 695–705, 1997

    Google Scholar 

  39. Park S, Lim Y, Lee D, Cho B, Bang YJ, Sung S, Kim HY, Kim DK, Lee YS, Song Y, Jeoung DI: Identification and characterization of a novel cancer/testis antigen gene CAGE-1. Biochim Biophys Acta 1625: 173–182, 2003

    Google Scholar 

  40. Nagayama H, Sato K, Morishita M, Uchimaru K, Oyaizu N, Inazawa T, Yamasaki T, Enomoto M, Nakaoka T, Nakamura T, Maekawa T, Yamamoto A, Shimada S, Saida T, Kawakami Y, Asano S, Tani K, Takahashi TA, Yamashita N: Results of a phase I clinical study using autologous tumour lysate-pulsed monocyte-derived mature dendritic cell vaccinations for stage IV malignant melanoma patients combined with low dose interleukin-2. Melanoma Res 13: 521–530, 2003

    Google Scholar 

  41. Andersen MH, Pedersen LO, Becker JC, and Straten PT: Identification of a cytotoxic T lymphocyte response to the apoptosis inhibitor protein survivin in cancer patients. Cancer Res 61: 869–872, 2001

    Google Scholar 

  42. Andersen MH, Pedersen LO, Capeller B, Brocker EB, Becker JC, and thor Straten P: Spontaneous cytotoxic T-cell responses against survivin-derived MHC class I-restricted T-cell epitopes in situ as well as ex vivo in cancer patients. Cancer Res 61: 5964–5968, 2001

    Google Scholar 

  43. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA: Mutations of the BRAF gene in human cancer. Nature 417: 949–954, 2002

    Google Scholar 

  44. Sharkey MS, Lizee G, Gonzales MI, Patel S, Topalian SL: CD4(+) T-cell recognition of mutated B-RAF in melanoma patients harboring the V599E mutation. Cancer Res 64: 1595–1599, 2004

    Google Scholar 

  45. Miyagishi M, Sumimoto H, Miyoshi H, Kawakami Y, Taira K: Optimization of an siRNA-expression system with a mutated hairpin and its significant suppressive effects upon HIV vector-mediated transfer into mammalian cells. J Gene Med 6:715–723, 2004

    Google Scholar 

  46. Sumimoto H, Miyagishi M, Miyoshi H, Yamagata S, Shimizu A, Taira K, Kawakami Y: Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus-mediated RNA interference. Oncogene 23: 6031–6039, 2004

    Google Scholar 

  47. Wang Q, Moyret-Lalle C, Couzon F, Surbiguet-Clippe C, Saurin JC, Lorca T, Navarro C, Puisieux A: Alterations of anaphase-promoting complex genes in human colon cancer cells. Oncogene 22: 1486–1490, 2003

    Google Scholar 

  48. Topalian SL, Gonzales MI, Ward Y, Wang X, Wang RF: Revelation of a cryptic major histocompatibility complex class II-restricted tumor epitope in a novel RNA-processing enzyme. Cancer Res 62: 5505–5509, 2002

    Google Scholar 

  49. Pieper R, Christian RE, Gonzales MI, Nishimura MI, Gupta G, Settlage RE, Shabanowitz J, Rosenberg SA, Hunt DF, Topalian SL: Biochemical identification of a mutated human melanoma antigen recognized by CD4(+) T cells. J Exp Med 189: 757–766, 1999

    Google Scholar 

  50. Wang HY, Zhou J, Zhu K, Riker AI, Marincola FM, Wang RF: Identification of a mutated fibronectin as a tumor antigen recognized by CD4+ T cells: its role in extracellular matrix formation and tumor metastasis. J Exp Med 195: 1397–1406, 2002

    Google Scholar 

  51. {Saeterdal I, Bjorheim J, Lislerud K, Gjertsen MK, Bukholm IK, Olsen OC, Nesland JM, Eriksen JA, Moller M, Lindblom A, Gaudernack G: Frameshift-mutation-derived peptides as tumor-specific antigens in inherited and spontaneous colorectal cancer. Proc Natl Acad Sci USA 98: 13255–13260, 2001

    Google Scholar 

  52. Mandruzzato S, Brasseur F, Andry G, Boon T, van der Bruggen P: A CASP-8 mutation recognized by cytolytic T lymphocytes on a human head and neck carcinoma. J Exp Med 186: 785–793, 1997

    Google Scholar 

  53. Triozzi PL, Khurram R, Aldrich WA, Walker MJ, Kim JA, Jaynes S: Intratumoral injection of dendritic cells derived in vitro in patients with metastatic cancer. Cancer 89: 2646–2654, 2000

    Google Scholar 

  54. Toda M, Iizuka Y, Kawase T, Uyemura K, Kawakami Y: Immuno-viral therapy of brain tumors by combination of viral therapy with cancer vaccination using a replication-conditional HSV. Cancer Gene Ther 9: 356–364, 2002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Kawakami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawakami, Y., Sumimoto, H., Fujita, T. et al. Immunological detection of altered signaling molecules involved in melanoma development. Cancer Metastasis Rev 24, 357–366 (2005). https://doi.org/10.1007/s10555-005-1583-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-005-1583-y

Key words

Navigation