Skip to main content

Advertisement

Log in

CD44 expression contributes to trastuzumab resistance in HER2-positive breast cancer cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Resistance to HER2-targeted therapies remains a major obstacle in the treatment of HER2-overexpressing breast cancer. CD44, a putative breast cancer stem cell (CSC) marker, is overexpressed in trastuzumab-resistant breast cancer cells. While CSC-related genes may play a role in the development of trastuzumab resistance, conflicting results have been published about CSC response to trastuzumab. We hypothesized that CD44 contributes to trastuzumab resistance independently of its role as a CSC marker. We used trastuzumab-sensitive breast cancer cell lines and their trastuzumab-resistant isogenic counterparts to evaluate the role of CD44 in response to trastuzumab. miRNA and mRNA expression were analyzed using microarray chips. A gene set enrichment analysis was created and matched with response to trastuzumab in cells and patient samples. The proportions of CSC in trastuzumab-resistant cells were similar to or lower than in the trastuzumab-sensitive cells. However, CD44 expression levels were significantly higher in both trastuzumab-resistant cell lines and its knockdown led to an increased response to trastuzumab. The invasiveness and anchorage-independent growth of trastuzumab-resistant cells were higher and blocked by downregulation of CD44. Results also showed that CD44-related resistance to trastuzumab is regulated by miRNAs. We identified a CD44-related gene expression profile that correlated with response to trastuzumab in cell lines and breast cancer patients. CD44 mediates trastuzumab resistance in HER2-positive breast cancer cells independently of its role as a CSC marker and that this role of CD44 is partly regulated by miRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CSC:

Cancer stem cells

siRNA:

Small interfering RNA

miRNA:

MicroRNA

HER2:

Human epidermal growth factor receptor 2

MUC4:

Mucin-4

pCR:

Pathologic complete response

RD:

Residual disease

ES:

Enrichment Score

NES:

Normalized Enrichment Score

p-val:

p value

FWER:

Family-wise error rate

FDR:

False discovery rate

References

  1. Jin Q, Esteva FJ (2008) Cross-talk between the ErbB/HER family and the type i insulin-like growth factor receptor signaling pathway in breast cancer. J Mammary Gland Biol Neoplas 13(4):485–498. doi:10.1007/s10911-008-9107-3

    Article  Google Scholar 

  2. Esteva FJ, Hortobagyi GN, Sahin AA, Smith TL, Chin DM, Liang SY, Pusztai L, Buzdar AU, Bacus SS (2001) Expression of erbB/HER receptors, heregulin and P38 in primary breast cancer using quantitative immunohistochemistry. Pathol Oncol Res 7(3):171–177

    Article  CAS  PubMed  Google Scholar 

  3. Esteva FJ, Sahin AA, Cristofanilli M, Arun B, Hortobagyi GN (2002) Molecular prognostic factors for breast cancer metastasis and survival. Semin Radiat Oncol 12(4):319–328

    Article  PubMed  Google Scholar 

  4. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182

    Article  CAS  PubMed  Google Scholar 

  5. Dawood S, Broglio K, Esteva FJ, Ibrahim NK, Kau SW, Islam R, Aldape KD, Yu TK, Hortobagyi GN, Gonzalez-Angulo AM (2008) Defining prognosis for women with breast cancer and CNS metastases by HER2 status. Ann Oncol 19(7):1242–1248. doi:10.1093/annonc/mdn036

    Article  CAS  PubMed  Google Scholar 

  6. Mazouni C, Hall A, Broglio K, Fritsche H, Andre F, Esteva FJ, Hortobagyi GN, Buzdar AU, Pusztai L, Cristofanilli M (2007) Kinetics of serum HER-2/neu changes in patients with HER-2-positive primary breast cancer after initiation of primary chemotherapy. Cancer 109(3):496–501

    Article  CAS  PubMed  Google Scholar 

  7. Esteva FJ (2004) Monoclonal antibodies, small molecules, and vaccines in the treatment of breast cancer. Oncologist 9(Suppl 3):4–9

    Article  CAS  PubMed  Google Scholar 

  8. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11):783–792

    Article  CAS  PubMed  Google Scholar 

  9. Smith I, Procter M, Gelber RD, Guillaume S, Feyereislova A, Dowsett M, Goldhirsch A, Untch M, Mariani G, Baselga J, Kaufmann M, Cameron D, Bell R, Bergh J, Coleman R, Wardley A, Harbeck N, Lopez RI, Mallmann P, Gelmon K, Wilcken N, Wist E, Sanchez Rovira P, Piccart-Gebhart MJ (2007) 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. Lancet 369(9555):29–36. doi:10.1016/S0140-6736(07)60028-2

    Article  CAS  PubMed  Google Scholar 

  10. Esteva FJ, Valero V, Booser D, Guerra LT, Murray JL, Pusztai L, Cristofanilli M, Arun B, Esmaeli B, Fritsche HA, Sneige N, Smith TL, Hortobagyi GN (2002) Phase II study of weekly docetaxel and trastuzumab for patients with HER-2-overexpressing metastatic breast cancer. J Clin Oncol 20(7):1800–1808

    Article  CAS  PubMed  Google Scholar 

  11. Ali SM, Carney WP, Esteva FJ, Fornier M, Harris L, Kostler WJ, Lotz JP, Luftner D, Pichon MF, Lipton A (2008) Serum HER-2/neu and relative resistance to trastuzumab-based therapy in patients with metastatic breast cancer. Cancer 113(6):1294–1301. doi:10.1002/cncr.23689

    Article  CAS  PubMed  Google Scholar 

  12. Swain SM, Kim SB, Cortes J, Ro J, Semiglazov V, Campone M, Ciruelos E, Ferrero JM, Schneeweiss A, Knott A, Clark E, Ross G, Benyunes MC, Baselga J (2013) Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol 14(6):461–471. doi:10.1016/S1470-2045(13)70130-X

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ (2005) Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res 65(23):11118–11128

    Article  CAS  PubMed  Google Scholar 

  14. Huang X, Gao L, Wang S, McManaman JL, Thor AD, Yang X, Esteva FJ, Liu B (2010) Heterotrimerization of the growth factor receptors erbB2, erbB3, and insulin-like growth factor-i receptor in breast cancer cells resistant to herceptin. Cancer Res 70(3):1204–1214. doi:10.1158/0008-5472.CAN-09-3321

    Article  CAS  PubMed  Google Scholar 

  15. Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M (2001) Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 93(24):1852–1857

    Article  CAS  PubMed  Google Scholar 

  16. Nagy P, Friedlander E, Tanner M, Kapanen AI, Carraway KL, Isola J, Jovin TM (2005) Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res 65(2):473–482. doi:10.1007/s10549-012-2082-9

    CAS  PubMed  Google Scholar 

  17. Scaltriti M, Rojo F, Ocana A, Anido J, Guzman M, Cortes J, Di Cosimo S, Matias-Guiu X, Ramon y Cajal S, Arribas J, Baselga J (2007) Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J Natl Cancer Inst 99(8):628–638. doi:10.1093/jnci/djk134

    Article  CAS  PubMed  Google Scholar 

  18. Nahta R, Takahashi T, Ueno NT, Hung MC, Esteva FJ (2004) P27(kip1) down-regulation is associated with trastuzumab resistance in breast cancer cells. Cancer Res 64(11):3981–3986

    Article  CAS  PubMed  Google Scholar 

  19. Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, Klos KS, Li P, Monia BP, Nguyen NT, Hortobagyi GN, Hung MC, Yu D (2004) PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6(2):117–127

    Article  CAS  PubMed  Google Scholar 

  20. Esteva FJ, Guo H, Zhang S, Santa-Maria C, Stone S, Lanchbury JS, Sahin AA, Hortobagyi GN, Yu D (2010) PTEN, PIK3CA, p-AKT, and p-p70S6 K status: association with trastuzumab response and survival in patients with HER2-positive metastatic breast cancer. Am J Pathol 177(4):1647–1656. doi:10.2353/ajpath.2010.090885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, Linn SC, Gonzalez-Angulo AM, Stemke-Hale K, Hauptmann M, Beijersbergen RL, Mills GB, van de Vijver MJ, Bernards R (2007) A functional genetic approach identifies the PI3 K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12(4):395–402. doi:10.1016/j.ccr.2007.08.030

    Article  CAS  PubMed  Google Scholar 

  22. Liang K, Esteva FJ, Albarracin C, Stemke-Hale K, Lu Y, Bianchini G, Yang CY, Li Y, Li X, Chen CT, Mills GB, Hortobagyi GN, Mendelsohn J, Hung MC, Fan Z (2010) Recombinant human erythropoietin antagonizes trastuzumab treatment of breast cancer cells via Jak2-mediated Src activation and PTEN inactivation. Cancer Cell 18(5):423–435. doi:10.1016/j.ccr.2010.10.025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Zhang S, Huang WC, Li P, Guo H, Poh SB, Brady SW, Xiong Y, Tseng LM, Li SH, Ding Z, Sahin AA, Esteva FJ, Hortobagyi GN, Yu D (2011) Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways. Nat Med 17(4):461–469. doi:10.1038/nm.2309

    Article  PubMed  Google Scholar 

  24. Palyi-Krekk Z, Barok M, Isola J, Tammi M, Szollosi J, Nagy P (2007) Hyaluronan-induced masking of ErbB2 and CD44-enhanced trastuzumab internalisation in trastuzumab resistant breast cancer. Eur J Cancer 43(16):2423–2433. doi:10.1016/j.ejca.2007.08.018

    Article  CAS  PubMed  Google Scholar 

  25. Bao W, Fu HJ, Xie QS, Wang L, Zhang R, Guo ZY, Zhao J, Meng YL, Ren XL, Wang T, Li Q, Jin BQ, Yao LB, Wang RA, Fan DM, Chen SY, Jia LT, Yang AG (2011) HER2 interacts with CD44 to up-regulate CXCR4 via epigenetic silencing of microRNA-139 in gastric cancer cells. Gastroenterology 141(6):2076–2087. doi:10.1053/j.gastro.2011.08.050

    Article  CAS  PubMed  Google Scholar 

  26. Lesniak D, Xu Y, Deschenes J, Lai R, Thoms J, Murray D, Gosh S, Mackey JR, Sabri S, Abdulkarim B (2009) Beta1-integrin circumvents the antiproliferative effects of trastuzumab in human epidermal growth factor receptor-2-positive breast cancer. Cancer Res 69(22):8620–8628. doi:10.1158/0008-5472.CAN-09-1591

    Article  CAS  PubMed  Google Scholar 

  27. Pandya K, Meeke K, Clementz AG, Rogowski A, Roberts J, Miele L, Albain KS, Osipo C (2011) Targeting both Notch and ErbB-2 signalling pathways is required for prevention of ErbB-2-positive breast tumour recurrence. Br J Cancer 105(6):796–806. doi:10.1038/bjc.2011.321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Liu JC, Voisin V, Bader GD, Deng T, Pusztai L, Symmans WF, Esteva FJ, Egan SE, Zacksenhaus E (2012) Seventeen-gene signature from enriched Her2/Neu mammary tumor-initiating cells predicts clinical outcome for human HER2 + : ERalpha-breast cancer. Proc Natl Acad Sci USA 109(15):5832–5837. doi:10.1073/pnas.1201105109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Magnifico A, Albano L, Campaner S, Delia D, Castiglioni F, Gasparini P, Sozzi G, Fontanella E, Menard S, Tagliabue E (2009) Tumor-initiating cells of HER2-positive carcinoma cell lines express the highest oncoprotein levels and are sensitive to trastuzumab. Clin Cancer Res 15(6):2010–2021. doi:10.1158/1078-0432.CCR-08-1327

    Article  CAS  PubMed  Google Scholar 

  30. Korkaya H, Paulson A, Iovino F, Wicha MS (2008) HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 27(47):6120–6130. doi:10.1038/onc.2008.207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Ithimakin S, Day KC, Malik F, Zen Q, Dawsey SJ, Bersano-Begey TF, Quraishi AA, Ignatoski KW, Daignault S, Davis A, Hall CL, Palanisamy N, Heath AN, Tawakkol N, Luther TK, Clouthier SG, Chadwick WA, Day ML, Kleer CG, Thomas DG, Hayes DF, Korkaya H, Wicha MS (2013) HER2 drives luminal breast cancer stem cells in the absence of HER2 amplification: implications for efficacy of adjuvant trastuzumab. Cancer Res 73(5):1635–1646. doi:10.1158/0008-5472.CAN-12-3349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Bedard PL, Cardoso F, Piccart-Gebhart MJ (2009) Stemming resistance to HER-2 targeted therapy. J Mammary Gland Biol Neoplas 14(1):55–66. doi:10.1007/s10911-009-9116-x

    Article  Google Scholar 

  33. Ghatak S, Misra S, Toole BP (2005) Hyaluronan constitutively regulates ErbB2 phosphorylation and signaling complex formation in carcinoma cells. J Biol Chem 280(10):8875–8883. doi:10.1074/jbc.M410882200

    Article  CAS  PubMed  Google Scholar 

  34. Dhillon J, Astanehe A, Lee C, Fotovati A, Hu K, Dunn SE (2010) The expression of activated Y-box binding protein-1 serine 102 mediates trastuzumab resistance in breast cancer cells by increasing CD44+ cells. Oncogene 29(47):6294–6300. doi:10.1038/onc.2010.365

    Article  CAS  PubMed  Google Scholar 

  35. Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:1–25. doi:10.2202/1544-6115.1027

    Google Scholar 

  36. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100(16):9440–9445. doi:10.1073/pnas.1530509100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Liu CG, Calin GA, Volinia S, Croce CM (2008) MicroRNA expression profiling using microarrays. Nat Protoc 3(4):563–578. doi:10.1038/nprot.2008.14

    Article  CAS  PubMed  Google Scholar 

  38. Hess KR, Anderson K, Symmans WF, Valero V, Ibrahim N, Mejia JA, Booser D, Theriault RL, Buzdar AU, Dempsey PJ, Rouzier R, Sneige N, Ross JS, Vidaurre T, Gomez HL, Hortobagyi GN, Pusztai L (2006) Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. J Clin Oncol 24(26):4236–4244

    Article  CAS  PubMed  Google Scholar 

  39. Symmans WF, Hatzis C, Sotiriou C, Andre F, Peintinger F, Regitnig P, Daxenbichler G, Desmedt C, Domont J, Marth C, Delaloge S, Bauernhofer T, Valero V, Booser DJ, Hortobagyi GN, Pusztai L (2010) Genomic index of sensitivity to endocrine therapy for breast cancer. J Clin Oncol 28(27):4111–4119. doi:10.1200/JCO.2010.28.4273

    Article  PubMed Central  PubMed  Google Scholar 

  40. Gong Y, Yan K, Lin F, Anderson K, Sotiriou C, Andre F, Holmes FA, Valero V, Booser D, Pippen JE Jr, Vukelja S, Gomez H, Mejia J, Barajas LJ, Hess KR, Sneige N, Hortobagyi GN, Pusztai L, Symmans WF (2007) Determination of oestrogen-receptor status and ERBB2 status of breast carcinoma: a gene-expression profiling study. Lancet Oncol 8(3):203–211

    Article  CAS  PubMed  Google Scholar 

  41. Loi S, Haibe-Kains B, Desmedt C, Lallemand F, Tutt AM, Gillet C, Ellis P, Harris A, Bergh J, Foekens JA, Klijn JG, Larsimont D, Buyse M, Bontempi G, Delorenzi M, Piccart MJ, Sotiriou C (2007) Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol 25(10):1239–1246. doi:10.1200/JCO.2006.07.1522

    Article  CAS  PubMed  Google Scholar 

  42. Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B, Viale G, Delorenzi M, Zhang Y, d’Assignies MS, Bergh J, Lidereau R, Ellis P, Harris AL, Klijn JS, Foekens JA, Cardoso F, Piccart MJ, Buyse M, Sotiriou C, Consortium T (2007) Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 13(11):3207–3214. doi:10.1158/1078-0432.CCR-06-2765

    Article  CAS  PubMed  Google Scholar 

  43. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M, Meijer-van Gelder ME, Yu J, Jatkoe T, Berns EM, Atkins D, Foekens JA (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460):671–679. doi:10.1016/S0140-6736(05)17947-1

    Article  CAS  PubMed  Google Scholar 

  44. Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10(2):R25. doi:10.1186/bcr1982

    Article  PubMed Central  PubMed  Google Scholar 

  45. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988. doi:10.1073/pnas.0530291100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA, Allan AL (2009) High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med 13(8B):2236–2252. doi:10.1111/j.1582-4934.2008.00455.x

    Article  PubMed  Google Scholar 

  47. Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S, Egan DA, Li A, Huang G, Klein-Szanto AJ, Gimotty PA, Katsaros D, Coukos G, Zhang L, Pure E, Agami R (2008) The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10(2):202–210. doi:10.1038/ncb1681

    Article  CAS  PubMed  Google Scholar 

  48. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M, Shak S, Stewart SJ, Press M (2002) Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20(3):719–726

    Article  CAS  PubMed  Google Scholar 

  49. Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L, Wolter JM, Paton V, Shak S, Lieberman G, Slamon DJ (1999) Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER-2 overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 17(9):2639–2648

    CAS  PubMed  Google Scholar 

  50. Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz CC, Dantis L, Sklarin NT, Seidman AD, Hudis CA, Moore J, Rosen PP, Twaddell T, Henderson IC, Norton L (1996) Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 14(3):737–744

    CAS  PubMed  Google Scholar 

  51. Hill A, McFarlane S, Mulligan K, Gillespie H, Draffin JE, Trimble A, Ouhtit A, Johnston PG, Harkin DP, McCormick D, Waugh DJ (2006) Cortactin underpins CD44-promoted invasion and adhesion of breast cancer cells to bone marrow endothelial cells. Oncogene 25(45):6079–6091. doi:10.1038/sj.onc.1209628

    Article  CAS  PubMed  Google Scholar 

  52. Ouhtit A, Abd Elmageed ZY, Abdraboh ME, Lioe TF, Raj MH (2007) In vivo evidence for the role of CD44s in promoting breast cancer metastasis to the liver. Am J Pathol 171(6):2033–2039. doi:10.2353/ajpath.2007.070535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Werb Z (1997) ECM and cell surface proteolysis: regulating cellular ecology. Cell 91(4):439–442. doi:10.1016/S0092-8674(00)80429-8

    Article  CAS  PubMed  Google Scholar 

  54. Peng ST, Su CH, Kuo CC, Shaw CF, Wang HS (2007) CD44 crosslinking-mediated matrix metalloproteinase-9 relocation in breast tumor cells leads to enhanced metastasis. Int J Oncol 31(5):1119–1126

    CAS  PubMed  Google Scholar 

  55. Bourguignon LY, Zhu H, Zhou B, Diedrich F, Singleton PA, Hung MC (2001) Hyaluronan promotes CD44v3-Vav2 interaction with Grb2-p185(HER2) and induces Rac1 and Ras signaling during ovarian tumor cell migration and growth. J Biol Chem 276(52):48679–48692. doi:10.1074/jbc.M106759200

    Article  CAS  PubMed  Google Scholar 

  56. Fang XJ, Jiang H, Zhao XP, Jiang WM (2011) The role of a new CD44st in increasing the invasion capability of the human breast cancer cell line MCF-7. BMC Cancer 11:290. doi:10.1186/1471-2407-11-290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Thanakit V, Sampatanukul P, Ruangvejvorachai P, Keelawat S (2005) The association of co-expression of CD44v4/MMP-9 with different nodal status in high-grade breast carcinoma patients. J Med Assoc Thail 88(Suppl 4):S30–S35

    Google Scholar 

  58. Fan M, Krutilina R, Sun J, Sethuraman A, Yang CH, Wu ZH, Yue J, Pfeffer LM (2013) Comprehensive analysis of microRNA (miRNA) targets in breast cancer cells. J Biol Chem 288(38):27480–27493. doi:10.1074/jbc.M113.491803

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Vrba L, Garbe JC, Stampfer MR, Futscher BW (2011) Epigenetic regulation of normal human mammary cell type-specific miRNAs. Genome Res 21(12):2026–2037. doi:10.1101/gr.123935.111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Sokilde R, Kaczkowski B, Podolska A, Cirera S, Gorodkin J, Moller S, Litman T (2011) Global microRNA analysis of the NCI-60 cancer cell panel. Mol Cancer Ther 10(3):375–384. doi:10.1158/1535-7163.MCT-10-0605

    Article  CAS  PubMed  Google Scholar 

  61. Baek JM, Jin Q, Ensor J, Boulbes DR, Esteva FJ (2011) Serum CD44 levels and overall survival in patients with HER2-positive breast cancer. Breast Cancer Res Treat. doi:10.1007/s10549-011-1691-z

    PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Breast Cancer Research Foundation (FJE). The University of Texas MD Anderson Cancer Center is supported in part by a Cancer Center Support Grant (CA016672) from the National Institutes of Health. The authors thank Xiaoping Su from Bioinformatics and Computational Biology for data analyses and Arthur Gelmis from the Department of Scientific Publications at MD Anderson Cancer Center for editorial assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The experiments preformed in this manuscript comply with the current laws of the United States of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Esteva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Supplementary material 2 (PPTX 693 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulbes, D.R., Chauhan, G.B., Jin, Q. et al. CD44 expression contributes to trastuzumab resistance in HER2-positive breast cancer cells. Breast Cancer Res Treat 151, 501–513 (2015). https://doi.org/10.1007/s10549-015-3414-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3414-3

Keywords

Navigation