Skip to main content

Advertisement

Log in

PE38KDEL-loaded anti-HER2 nanoparticles inhibit breast tumor progression with reduced toxicity and immunogenicity

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The clinical use of Pseudomonas exotoxin A (PE)-based immunotoxins is limited by the toxicity and immunogenicity of PE. To overcome the limitations, we have developed PE38KDEL-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles conjugated with Fab′ fragments of a humanized anti-HER2 monoclonal antibody (rhuMAbHER2). The PE38KDEL-loaded nanoparticles-anti-HER2 Fab′ bioconjugates (PE-NP-HER) were constructed modularly with Fab′ fragments of rhuMAbHER2 covalently linked to PLGA nanoparticles containing PE38KDEL. Compared with nontargeted nanoparticles that lack anti-HER2 Fab′, PE-NP-HER specifically bound to and were sequentially internalized into HER2 overexpressing breast cancer cells, which result in significant cytotoxicity in vitro. In HER2 overexpressing tumor xenograft model system, administration of PE-NP-HER showed a superior efficacy in inhibiting tumor growth compared with PE-HER referring to PE38KDEL conjugated directly to rhuMAbHER2. Moreover, PE-NP-HER was well tolerated in mice with a higher LD50 (LD50 of 6.86 ± 0.47 mg/kg vs. 2.21 ± 0.32 mg/kg for PE-NP-HER vs. PE-HER (mean ± SD); n = 3), and had no influence on the plasma level of plasma alanine aminotransferase (ALT) of animals when injected at a dose of 1 mg/kg where PE-HER caused significant increase of serum ALT in the treated mice. Notably, PE-NP-HER was of low immunogenicity in development of anti-PE38KDEL neutralizing antibodies and was less susceptible to inactivation by anti-PE38KDEL antibodies compared with PE-HER. This novel bioconjugate, PE-NP-HER, may represent a useful strategy for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pastan I, Hassan R, Fitzgerald DJ, Kreitman RJ (2006) Immunotoxin therapy of cancer. Nat Rev Cancer 6:559–565

    Article  PubMed  CAS  Google Scholar 

  2. Pastan I, Pai LH, Brinkmann U, FitzGerald D (1996) Recombinant immunotoxins. Breast Cancer Res Treat 38:3–9

    Article  PubMed  CAS  Google Scholar 

  3. Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ (2007) Immunotoxin treatment of cancer. Annu Rev Med 58:221–237

    Article  PubMed  CAS  Google Scholar 

  4. Ochiai H, Archer GE, Herndon JE 2nd, Kuan CT, Mitchell DA, Bigner DD, Pastan IH, Sampson JH (2008) EGFRvIII-targeted immunotoxin induces antitumor immunity that is inhibited in the absence of CD4+ and CD8+ T cells. Cancer Immunol Immunother 57:115–121

    Article  PubMed  CAS  Google Scholar 

  5. Kreitman RJ (1999) Immunotoxins in cancer therapy. Curr Opin Immunol 11:570–578

    Article  PubMed  CAS  Google Scholar 

  6. Onda M, Nagata S, Tsutsumi Y, Vincent JJ, Wang Q, Kreitman RJ, Lee B, Pastan I (2001) Lowering the isoelectric point of the Fv portion of recombinant immunotoxins leads to decreased nonspecific animal toxicity without affecting antitumor activity. Cancer Res 61:5070–5077

    PubMed  CAS  Google Scholar 

  7. Pai LH, FitzGerald DJ, Tepper M, Schacter B, Spitalny G, Pastan I (1990) Inhibition of antibody response to Pseudomonas exotoxin and an immunotoxin containing Pseudomonas exotoxin by 15-deoxyspergualin in mice. Cancer Res 50:7750–7753

    PubMed  CAS  Google Scholar 

  8. Hassan R, Williams-Gould J, Watson T, Pai-Scherf L, Pastan I (2004) Pretreatment with rituximab does not inhibit the human immune response against the immunogenic protein LMB-1. Clin Cancer Res 10:16–18

    Article  PubMed  CAS  Google Scholar 

  9. Bang S, Nagata S, Onda M, Kreitman RJ, Pastan I (2005) HA22 (R490A) is a recombinant immunotoxin with increased antitumor activity without an increase in animal toxicity. Clin Cancer Res 11:1545–1550

    Article  PubMed  CAS  Google Scholar 

  10. Kreitman RJ, Squires DR, Stetler-Stevenson M, Noel P, FitzGerald DJ, Wilson WH, Pastan I (2005) Phase I trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with B-cell malignancies. J Clin Oncol 23:6719–6729

    Article  PubMed  CAS  Google Scholar 

  11. Tsutsumi Y, Onda M, Nagata S, Lee B, Kreitman RJ, Pastan I (2000) Site-specific chemical modification with polyethylene glycol of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) improves antitumor activity and reduces animal toxicity and immunogenicity. Proc Natl Acad Sci USA 97:8548–8553

    Article  PubMed  CAS  Google Scholar 

  12. Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818–1822

    Article  PubMed  CAS  Google Scholar 

  13. Avgoustakis K, Beletsi A, Panagi Z, Klepetsanis P, Karydas AG, Ithakissios DS (2002) PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J Control Release 79:123–135

    Article  PubMed  CAS  Google Scholar 

  14. Lin R, Shin Nq L, Wang CH (2005) In vitro study of anticancer drug doxorubicin in PLGA-based microparticles. Biomaterials 26:4476–4485

    Article  PubMed  CAS  Google Scholar 

  15. Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54:631–651

    Article  PubMed  CAS  Google Scholar 

  16. Litzinger DC, Buiting AM, van Rooijen N, Huang L (1994) Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes. Biochim Biophys Acta 1190:99–107

    Article  PubMed  CAS  Google Scholar 

  17. Visaria RK, Griffin RJ, Williams BW, Ebbini ES, Paciotti GF, Song CW, Bischof JC (2006) Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-alpha delivery. Mol Cancer Ther 5:1014–1020

    Article  PubMed  CAS  Google Scholar 

  18. Degim IT, Celebi N (2007) Controlled delivery of peptides and proteins. Curr Pharm Des 13:99–117

    Article  PubMed  CAS  Google Scholar 

  19. Beer SJ, Matthews CB, Stein CS, Ross BD, Hilfinger JM, Davidson BL (1998) Poly (lactic-glycolic) acid copolymer encapsulation of recombinant adenovirus reduces immunogenicity in vivo. Gene Ther 5:740–746

    Article  PubMed  CAS  Google Scholar 

  20. Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 103:6315–6320

    Article  PubMed  CAS  Google Scholar 

  21. Song S, Xue J, Fan K, Kou G, Zhou Q, Wang H, Guo Y (2005) Preparation and characterization of fusion protein truncated Pseudomonas Exotoxin A (PE38KDEL) in Escherichia coli. Protein Expr Purif 44:52–57

    Article  PubMed  CAS  Google Scholar 

  22. Wang H, Song S, Kou G, Li B, Zhang D, Hou S, Qian W, Dai J, Tian L, Zhao J, Guo Y (2007) Treatment of hepatocellular carcinoma in a mouse xenograft model with an immunotoxin which is engineered to eliminate vascular leak syndrome. Cancer Immunol Immunother 56:1775–1783

    Article  PubMed  CAS  Google Scholar 

  23. Dowsett M, Nicholson RI, Pietras RJ (2005) Biological characteristics of the pure antiestrogen fulvestrant: overcoming endocrine resistance. Breast Cancer Res Treat 93(Suppl 1):S11–S18

    Article  PubMed  CAS  Google Scholar 

  24. Pegram M, Ngo D (2006) Application and potential limitations of animal models utilized in the development of trastuzumab (Herceptin): a case study. Adv Drug Deliv Rev 58:723–734

    Article  PubMed  CAS  Google Scholar 

  25. Kondo T, FitzGerald D, Chaudhary VK, Adhya S, Pastan I (1988) Activity of immunotoxins constructed with modified Pseudomonas exotoxin A lacking the cell recognition domain. J Biol Chem 263:9470–9475

    PubMed  CAS  Google Scholar 

  26. Martin FJ, Hubbell WL, Papahadjopoulos D (1981) Immunospecific targeting of liposomes to cells: a novel and efficient method for covalent attachment of Fab’ fragments via disulfide bonds. Biochemistry 20:4229–4238

    Article  PubMed  CAS  Google Scholar 

  27. Blanco D, Alonso MJ (1997) Development and characterization of protein-loaded poly(lactic/glycolic acid) nanospheres. Eur J Pharm Biopharm 43:285–294

    Google Scholar 

  28. Kim SH, Jeong JH, Chun KW, Park TG (2005) Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)-poly(ethylene glycol)-folate conjugate. Langmuir 21:8852–8857

    Article  PubMed  CAS  Google Scholar 

  29. Mo Y, Lim LY (2005) Paclitaxel-loaded PLGA nanoparticles: potentiation of anticancer activity by surface conjugation with wheat germ agglutinin. J Control Release 108:244–262

    Article  PubMed  CAS  Google Scholar 

  30. Sandor M, Harris J, Mathiowitz E (2002) A novel polyethylene depot device for the study of PLGA and P(FASA) microspheres in vitro and in vivo. Biomaterials 23:4413–4423

    Article  PubMed  CAS  Google Scholar 

  31. Gaspar MM, Blanco D, Cruz ME, Alonso MJ (1998) Formulation of L-asparaginase-loaded poly(lactide-co-glycolide) nanoparticles: influence of polymer properties on enzyme loading, activity and in vitro release. J Control Release 52:53–62

    Article  Google Scholar 

  32. Zeisig R, Teppke AD, Behrens D, Fichtner I (2004) Liposomal 4-hydroxy-tamoxifen: effect on cellular uptake and resulting cytotoxicity in drug resistant breast cancer cells in vitro. Breast Cancer Res Treat 87:245–254

    Article  PubMed  CAS  Google Scholar 

  33. Li B, Wang H, Zhang D, Qian W, Hou S, Shi S, Zhao L, Kou G, Cao Z, Dai J, Guo Y (2007) Construction and characterization of a high-affinity humanized SM5-1 monoclonal antibody. Biochem Biophys Res Commun 357:951–956

    Article  PubMed  CAS  Google Scholar 

  34. Kou G, Gao J, Wang H, Chen H, Li B, Zhang D, Wang S, Hou S, Qian W, Dai J, Zhong Y, Guo Y (2007) Preparation and characterization of paclitaxel-loaded PLGA nanoparticles coated with cationic SM5-1 single-chain antibody. J Biochem Mol Biol 40:731–739

    PubMed  CAS  Google Scholar 

  35. Schumann J, Wolf D, Pahl A, Brune K, Papadopoulos T, van Rooijen N, Tiegs G (2000) Importance of Kupffer cells for T-cell-dependent liver injury in mice. Am J Pathol 157:1671–1683

    PubMed  CAS  Google Scholar 

  36. Wang HW, Putt ME, Emanuele MJ, Shin DB, Glatstein E, Yodh AG, Busch TM (2004) Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome. Cancer Res 64:7553–7561

    Article  PubMed  CAS  Google Scholar 

  37. Johnston D, Reynolds SR, Bystryn JC (2006) Interleukin-2/liposomes potentiate immune responses to a soluble protein cancer vaccine in mice. Cancer Immunol Immunother 55:412–419

    Article  PubMed  CAS  Google Scholar 

  38. Wolf M, Wirth M, Pittner F, Gabor F (2003) Stabilisation and determination of the biological activity of L-asparaginase in poly(D, L-lactide-co-glycolide) nanospheres. Int J Pharm 256:141–152

    Article  PubMed  CAS  Google Scholar 

  39. Frankel AE (2004) Reducing the immune response to immunotoxin. Clin Cancer Res 10:13–15

    Article  PubMed  CAS  Google Scholar 

  40. Park JW, Hong K, Kirpotin DB, Colbern G, Shalaby R, Baselga J, Shao Y, Nielsen UB, Marks JD, Moore D, Papahadjopoulos D, Benz CC (2002) Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res 8:1172–1181

    PubMed  CAS  Google Scholar 

  41. Park JW, Kirpotin DB, Hong K, Shalaby R, Shao Y, Nielsen UB, Marks JD, Papahadjopoulos D, Benz CC (2001) Tumor targeting using anti-her2 immunoliposomes. J Control Release 74:95–113

    Article  PubMed  CAS  Google Scholar 

  42. Park JW, Benz CC, Martin FJ (2004) Future directions of liposome- and immunoliposome-based cancer therapeutics. Semin Oncol 31:196–205

    Article  PubMed  CAS  Google Scholar 

  43. Mamot C, Drummond DC, Noble CO, Kallab V, Guo Z, Hong K, Kirpotin DB, Park JW (2005) Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 65:11631–11638

    Article  PubMed  CAS  Google Scholar 

  44. Scholes PD, Coombes AGA, Illum L, Davis SS, Vert M, Davies MC (1993) The preparation of sub-200 nm poly(lactide-co-glycolide) microspheres for site-specific drug delivery. J Control Release 25:145–153

    Article  CAS  Google Scholar 

  45. Sapra P, Allen TM (2003) Ligand-targeted liposomal anticancer drugs. Prog Lipid Res 42:439–462

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms. Yang Yang and Ms. Jing Xu for their technical assistance. This work was supported by National Natural Science Foundation of China, Shanghai Commission of Science & Technology, Ministry of Science and Technology of China (973&863 program projects), Pudong Commission of Science and Technology of Shanghai and a special grant from E-Institute of Universities, Immunology Division, Shanghai Commission of Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanqiang Zhong or Yajun Guo.

Additional information

J. Gao, G. Kou and H. Wang contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

MOESM1 (PDF 29 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, J., Kou, G., Wang, H. et al. PE38KDEL-loaded anti-HER2 nanoparticles inhibit breast tumor progression with reduced toxicity and immunogenicity. Breast Cancer Res Treat 115, 29–41 (2009). https://doi.org/10.1007/s10549-008-0043-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0043-0

Keywords

Navigation