Skip to main content
Log in

Numerical evaluation and experimental validation of cross-flow microfiltration device design

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This research presents a comprehensive analysis of the design and validation of a cross-flow microfiltration device for separation of microspheres based on size. Simulation results showed that pillar size, pillar shape, incorporation of back-flow preventers, and rounding of pillar layouts affected flow patterns in a cross-flow microfiltration device. Simulation results suggest that larger pillar sizes reduce filtration capacity by decreasing the density of microfiltration gaps in the device. Therefore, 10 μm rather than 20 μm diameter pillars were incorporated in the device. Fluid flow was not greatly affected when comparing circular, octagonal, and hexagonal pillars. However, side-channel fluid velocities decreased when using triangular and square pillars. The lengths of back-flow prevention walls were optimized to completely prevent back flow without inhibiting filtration ability. A trade-off was observed in the designs of the pillar layouts; while rounding the pillars layout in the channels bends eliminated stagnation areas, the design also decreased side-channel fluid velocity compared to the right-angle layout. Experimental separation efficiency was tested using polydimethylsiloxane (PDMS) and silicon microfluidic devices with microspheres simulating white and red blood cells. Efficiencies for separation of small microspheres to the side channels ranged from 73 to 75%. The silicon devices retained the large microspheres in the main channel with efficiencies between 95 and 100%, but these efficiencies were lower with PDMS devices and were affected by sphere concentration. Additionally, PDMS devices resulted in greater agglomeration of spheres when compared to silicon devices. PDMS devices, however, were easier and less expensive to fabricate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • M. Antfolk, T. Laurell, Anal. Chim. Acta 965, 9–35 (2017)

    Article  Google Scholar 

  • S. Basuray, S. Senapati, A. Aijian, A.R. Mahon, H.C. Chang, ACS Nano 3(7), 1823–1830 (2009)

    Article  Google Scholar 

  • S. Birkar, J. Mead, C. Barry, Rubber Chem. Technol. 87, 629–646 (2014)

    Article  Google Scholar 

  • X. Chen, D. Cui, C. Liu, H. Li, J. Chen, Anal. Chim. Acta 584, 237–243 (2007)

    Article  Google Scholar 

  • X. Chen, D.F. Cui, C.C. Liu, H. Li, Sensors Actuators B 130, 216–221 (2008)

    Article  Google Scholar 

  • C.D. Chin, S.Y. Chin, T. Laksanasopin, S.K. Sia, in Point-of-care diagnostics on a chip, ed. by D. Issadore and R.M. Westervelt, (Springer-Verlag, 2013)

  • J. Choi, J. Hyun, S. Yang, Sci. Rep. 5, 15167 (2015)

    Article  Google Scholar 

  • J.D. Cutnell, K.W. Johnson, Physics, 4th ed. (Wiley, 1998) pp. 308

  • R.L. Fournier, Basic transport phenomena in biomedical engineering, (Taylor & Francis Group, 2006)

  • Z. Geng, Y. Ju, Q. Wang, W. Wang, Z. Li, RSC Adv. 3, 14798–14806 (2013)

    Article  Google Scholar 

  • S.B.N. Gourikutty, C.P. Chang, P.D. Puiu, J. Chromatogr. B 1011, 77–88 (2016)

    Article  Google Scholar 

  • Q. Guo, S.P. Duffy, K. Matthews, E. Islamzada, H. Ma, Sci. Rep. 7, 6627 (2017)

    Article  Google Scholar 

  • H.W. Hou, A.A. Bhagat, W.C. Lee, S. Huang, J. Han, C.T. Lim, Micromachines 2, 319–343 (2011)

    Article  Google Scholar 

  • H.M. Ji, V. Samper, Y. Chen, C.K. Heng, T.M. Lim, L. Yobas, Biomed. Microdevices 10, 251–257 (2008)

    Article  Google Scholar 

  • N.J. Kent, L. Basabe-Desmonts, G. Meade, B.D. MacCraith, B.G. Corcoran, D. Kenny, A.J. Ricco, Biomed. Microdevices 12, 987–1000 (2010)

    Article  Google Scholar 

  • B. Kim, Y.J. Choi, H. Seo, E.C. Shin, S. Choi, Small 12, 5159–5168 (2016)

    Article  Google Scholar 

  • A.C.M. Kuo, in Polymer data handbook, ed by J.E. Mark, (Oxford University Press, Inc., 1999), p. 411–435

  • J. Kuo, Y. Zhao, L. Ng, G.S. Yen, R.M. Lorenz, D.S.W. Lim, D.T. Chiu, Lab Chip 9, 1951–1956 (2009)

    Article  Google Scholar 

  • J.S. Kuo, Y. Zhao, P.G. Schiro, L. Ng, D.S.W. Lim, J.P. Shelby, D.T. Chiu, Lab Chip 10, 837–842 (2010)

    Article  Google Scholar 

  • X. Li, W. Chen, G. Liu, W. Lu, J. Fu, Lab Chip 14, 2565–2575 (2014)

    Article  Google Scholar 

  • P. Li, Z. Mao, Z. Peng, L. Zhou, Y. Chen, P.H. Huang, C.I. Truica, J.J. Drabick, W.S. El-Deiry, M. Dao, S. Suresh, T.J. Huang, Proc. Natl. Acad. Sci. 112, 4970–4975 (2015)

    Article  Google Scholar 

  • Y.-J. Liu, S.-S. Guo, Z.-L. Zhang, W.-H. Huang, D. Baigl, M. Xie, Y. Chen, D.-W. Pang, Electrophoresis 28, 4713–4722 (2007)

    Article  Google Scholar 

  • J. Nam, H. Huang, H. Lim, C. Lim, S. Shin, Anal. Chem. 85(15), 7316–7323 (2013)

    Article  Google Scholar 

  • C. Rivet, H. Lee, A. Hirsch, S. Hamilton, H. Lu, Chem. Eng. Sci. 66(7), 1490–1507 (2011)

    Article  Google Scholar 

  • A. Russom, P. Sethu, D. Irimia, M.N. Mindrinos, S.E. Calvano, I. Garcia, C. Finnerty, C. Tannahill, A. Abouhamze, J. Wilhelmy, M.C. Lopez, H.V. Baker, D.N. Herndon, S.F. Lowry, R.V. Maler, R.W. Daviw, L.L. Moldawer, R.G. Tompkins, M. Toner, Clin. Chem. 54(5), 891–900 (2008)

    Article  Google Scholar 

  • E.K. Sackmann, A.L. Fulton, D.J. Beebe, Nature 507, 181–189 (2014)

    Article  Google Scholar 

  • S.T. Sanjay, G. Fu, M. Dou, F. Xu, R. Liu, H. Qi, X.J. Li, Analyst 140, 7062–7081 (2015)

    Article  Google Scholar 

  • P. Sethu, A. Sin, M. Toner, Lab Chip 6(1), 83–89 (2006)

    Article  Google Scholar 

  • A. Shamloo, P. Vatankhah, M.A. Bijarchi, Eur. J. Mech. B/Fluids 57, 31–39 (2016)

    Article  MathSciNet  Google Scholar 

  • R.D. Sochol, D. Corbett, S. Hesse, W.E.R. Krieger, K.T. Wolf, M. Kim, K. Iwai, S. Li, L.P. Lee, L. Lin, Lab Chip 14, 1405–1409 (2014)

    Article  Google Scholar 

  • S. Song, S. Choi, J. Chromatogr. A 1302, 191–196 (2013)

    Article  Google Scholar 

  • Y. Sun, Y.C. Kwok, Anal. Chim. Acta 556, 80–96 (2006)

    Article  Google Scholar 

  • G.T. Vladisavljević, N. Khalid, M.A. Neves, T. Kuroiwa, M. Nakajima, K. Uemura, S. Ichikawa, I. Kobayashi, Adv. Drug Deliv. Rev. 65, 1626–1663 (2013)

    Article  Google Scholar 

  • L.R. Volpatti, A.K. Yetisen, Trends Biotechnol. 32, 347–350 (2014)

    Article  Google Scholar 

  • J.-H. Wang, C.-H. Wang, G.-B. Lee, Ann. Biomed. Eng. 40, 1367–1383 (2012)

    Article  Google Scholar 

  • Z. Wu, A.Q. Liu, K. Hjort, J. Micromech. Microeng. 17(10), 1992–1999 (2007)

    Article  Google Scholar 

  • S. Yan, J. Zhang, M. Li, G. Alici, H. Du, R. Sluyter, W. Li, Sci. Rep. 4, 5060 (2014)

    Article  Google Scholar 

  • Y. Yoon, S. Kim, J. Lee, J. Choi, R.K. Kim, S.J. Lee, O. Sul, S.B. Lee, Sci. Rep. 6(26531) (2016)

  • Z.T.F. Yu, K.M. Aw Yong, J. Fu, Small 10, 1687–1703 (2014)

    Article  Google Scholar 

  • Z.T.F. Yu, J.G. Joseph, S.X. Liu, M.K. Cheung, P.J. Haffey, K. Kurabayashi, J. Fu, Sensors Actuators B 245, 1050–1061 (2017)

    Article  Google Scholar 

  • J. Zhang, S. Yan, D. Yuan, G. Alici, N.T. Nguyen, M.E. Warkiani, W. Li, Lab Chip 16, 10 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Dr. Hongwei Sun for the use his equipment at UMass Lowell, and Hamed Esmailzadeh Khosravieh, Junwei Su, and Che-Fu Su for their assistance with that equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nese Orbey.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Jesús Vega, M., Wakim, J., Orbey, N. et al. Numerical evaluation and experimental validation of cross-flow microfiltration device design. Biomed Microdevices 21, 21 (2019). https://doi.org/10.1007/s10544-019-0378-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-019-0378-9

Keywords

Navigation