Skip to main content

Advertisement

Log in

Bubble-driven mixer integrated with a microfluidic bead-based ELISA for rapid bladder cancer biomarker detection

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In this study, fine bubbles were successfully generated and used as a simple, low-cost driving force for mixing fluids in an integrated microfluidic bead-based enzyme-linked immunosorbent assay (ELISA) to rapidly and quantitatively detect apolipoprotein A1 (APOA1), a biomarker highly correlated with bladder cancer. A wooden gas diffuser was embedded underneath a microfluidic chip to refine injected air and generate bubbles of less than 0.3 mm. The rising bubbles caused disturbances and convection in the fluid, increasing the probability of analyte interaction. This setup not only simplifies the micromixer design but also achieves rapid mixing with a small airflow as a force. We used this bubble-driven micromixer in a bead-based ELISA that targeted APOA1. The results indicate that this micromixer reduced the time for each incubation from 60 min in the conventional assay to 8 min with the chip, resulting in a reduction of total ELISA reaction time from 3–4 h to 30–40 min. Furthermore, the concentration detection limit was 9.16 ng/mL, which was lower than the detection cut-off value (11.16 ng/mL) for bladder cancer diagnosis reported in the literature. Therefore, this chip can be used to achieve rapid low-cost bladder cancer detection and may be used in point-of-care cancer monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • D. Ahmed, X. Mao, B.K. Juluri, T.J. Huang, Microfluid. Nanofluid. 7, 727 (2009)

    Article  Google Scholar 

  • P.A. Auroux, D. Iossifidis, D.R. Reyes, A. Manz, Anal. Chem. 74, 2637 (2002)

    Article  Google Scholar 

  • Y.T. Chen, C.L. Chen, H.W. Chen, T. Chung, C.C. Wu, C.D. Chen, C.W. Hsu, M.C. Chen, K.H. Tsui, P.L. Chang, Y.S. Chang, J.S. Yu, J. Proteome Res. 9, 5803 (2010)

    Article  Google Scholar 

  • Y.T. Chen, H.W. Chen, D. Domanski, D.S. Smith, K.H. Liang, C.C. Wu, C.L. Chen, T. Chung, M.C. Chen, Y.S. Chang, C.E. Parker, C.H. Borchers, J.S. Yu, J. Proteomics 75, 3529 (2012)

    Article  Google Scholar 

  • P. Garstecki, M.J. Fuerstman, M.A. Fischbach, S.K. Sia, G.M. Whitesides, Lab Chip 6, 207 (2006)

    Article  Google Scholar 

  • Y. Hayashi, R. Matsuda, T. Maitani, Anal. Chem. 76, 1295 (2004)

    Article  Google Scholar 

  • M. Herrmann, E. Roy, T. Veres, M. Tabrizian, Lab Chip 7, 1546 (2007)

    Article  Google Scholar 

  • P.I. Karakiewicz, S. Benayoun, C. Zippe, G. Lüdecke, H. Boman, M. Sanchez-Carbayo, R. Casella, C. Mian, M.G. Friedrich, S. Eissa, H. Akaza, H. Huland, H. Hedelin, R. Rupesh, N. Miyanaga, A.I. Sagalowsky, M.J. Marberger, S.F. Shariat, BJU Int. 97, 997 (2006)

    Article  Google Scholar 

  • D.S. Kim, S.H. Lee, T.H. Kwon, C.H. Ahn, Lab Chip 5, 739 (2005)

    Article  Google Scholar 

  • D.S. Kim, S.W. Lee, T.H. Kwon, S.S. Lee, J. Micromech. Microeng. 14, 798 (2004)

    Article  Google Scholar 

  • H. Li, C. Li, H. Wu, T. Zhang, J. Wang, S. Wang, J. Chang, Proteome Sci. 9, 1 (2011)

    Article  Google Scholar 

  • Y.H. Lin, Y.J. Chen, C.S. Lai, Y.T. Chen, C.L. Chen, J.S. Yu, Y.S. Chang, Biomicrofluidics 7, 024103 (2013)

    Article  Google Scholar 

  • M. Lindén, S.B. Lind, C. Mayrhofer, U. Segersten, K. Wester, Y. Lyutvinskiy, R. Zubarev, P.-U. Malmström, U. Pettersson, Proteomics 12, 135 (2012)

    Article  Google Scholar 

  • R.H. Liu, J. Yang, M.Z. Pindera, M. Athavale, P. Grodzinski, Lab Chip 2, 151 (2002)

    Article  Google Scholar 

  • R.H. Liu, R. Lenigk, R.L. Druyor-Sanchez, J. Yang, P. Grodzinski, Anal. Chem. 75, 1911 (2003)

    Article  Google Scholar 

  • Y. Lotana, C.G. Roehrborna, Urology 61, 109 (2003)

    Article  Google Scholar 

  • L.H. Lu, K.S. Ryu, C. Liu, J. Microelectromech. Syst. 11, 462 (2002)

    Article  Google Scholar 

  • X. Mao, B.K. Juluri, M.I. Lapsley, Z.S. Stratton, T.J. Huang, Microfluid. Nanofluid. 8, 139 (2010)

    Article  Google Scholar 

  • K.G. McKenzie, L.K. Lafleur, B.R. Lutz, P. Yager, Lab Chip 9, 3543 (2009)

    Article  Google Scholar 

  • D. Mitropoulos, A. Kiroudi-Voulgari, P. Nikolopoulos, T. Manousakas, A. Zervas, J. Endourol. 19, 861 (2005)

    Article  Google Scholar 

  • L.V. Rajakovic, D.D. Markovic, V.N. Rajakovic-Ognjanovic, D.Z. Antanasijevic, Talanta 102, 79 (2012)

    Article  Google Scholar 

  • H. Suzuki, C.M. Ho, N. Kasagi, J. Microelectromech. Syst. 13, 779 (2004)

    Article  Google Scholar 

  • T. Tanahashi, Y. Matsumura, H. Ohmori, T. Tanaka, Acta Med. Okayama 32, 139 (1978)

    Google Scholar 

  • J.H. Tsai, L. Lin, J. Microelectromech. Syst. 11, 665 (2002)

    Article  Google Scholar 

  • R.A. Vijayendran, K.M. Motsegood, D.J. Beebe, D.E. Leckband, Langmuir 19, 1824 (2003)

    Article  Google Scholar 

  • H. Xiao, D. Liang, G. Liu, M. Guo, W. Xing, J. Cheng, Lab Chip 6, 1067 (2006)

    Article  Google Scholar 

  • S.Y. Yang, J.L. Lin, G.B. Lee, J. Micromech. Microeng. 19, 035020 (2009a)

    Article  Google Scholar 

  • Y.N. Yang, H.I. Lin, J.H. Wang, S.C. Shiesh, G.B. Lee, Biosens. Bioelectron. 24, 3091 (2009b)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council and the Ministry of Education of Taiwan for the financial support provided to this study under Grant No. NSC 100-2221-E-182-021-MY3 and EMRPD1A0761.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen-Heng Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, YH., Wang, CC. & Lei, K.F. Bubble-driven mixer integrated with a microfluidic bead-based ELISA for rapid bladder cancer biomarker detection. Biomed Microdevices 16, 199–207 (2014). https://doi.org/10.1007/s10544-013-9822-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-013-9822-4

Keywords

Navigation