Skip to main content

Advertisement

Log in

Wafer-scale fabrication of penetrating neural microelectrode arrays

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The success achieved with implantable neural interfaces has motivated the development of novel architectures of electrode arrays and the improvement of device performance. The Utah electrode array (UEA) is one example of such a device. The unique architecture of the UEA enables single-unit recording with high spatial and temporal resolution. Although the UEA has been commercialized and been used extensively in neuroscience and clinical research, the current processes used to fabricate UEA’s impose limitations in the tolerances of the electrode array geometry. Further, existing fabrication costs have led to the need to develop less costly but higher precision batch fabrication processes. This paper presents a wafer-scale fabrication method for the UEA that enables both lower costs and faster production. More importantly, the wafer-scale fabrication significantly improves the quality and tolerances of the electrode array and allow better controllability in the electrode geometry. A comparison between the geometrical and electrical characteristics of the wafer-scale and conventional array-scale processed UEA’s is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • D.J. Anderson, K. Najafi, S.J. Tanghe, D.A. Evans, K.L. Levy, J.F. Hetke, X.L. Xue, J.J. Zappia, K.D. Wise, Batch-fabricated thin-film electrodes for stimulation of the central auditory system. IEEE Trans Biomed Eng 36, 693–704 (1989)

    Article  Google Scholar 

  • R. Bhandari, S. Negi, L. Rieth, F. Solzbacher, “A Wafer Scale Etching Technique for High Aspect Ratio Implantable MEMS Structures,” accepted in Sensors and Actuators Phys (2010)

  • Q. Bai, K.D. Wise, D.J. Anderson, A high-yield microassembly structure for three-dimensional microelectrode arrays. IEEE Trans Biomed Eng 47, 281–289 (2000)

    Article  Google Scholar 

  • R.B. Beard, B.N. Hung, R. Schmukler, Biocompatibility considerations at stimulating electrode interface. Ann. Biomed.Eng 20, 395–410 (1992)

    Article  Google Scholar 

  • R. Bhandari, S. Negi, L. Rieth, R.A. Normann, F. Solzbacher, A novel method of fabricating convoluted shaped electrode arrays for neural and retinal prosthesis. Sensors and Actuators Phys 145-146(1-2), 123–130 (2008)

    Article  Google Scholar 

  • R. Bhandari, S. Negi, L. Rieth, R.A Normann, F. Solzbacher, A novel masking technique for high aspect ratio penetrating microelectrode arrays. Journal of Micromechanics and Microengineering, doi:10.1088/0960-1317/19/3/035004, 2009.

  • R. Bhandari, S. Negi, L. Rieth, F. Solzbacher. Wafer-scale processed, low impedance, neural arrays with varying length microelectrodes. in Proceedings of Transducers ’09, Denver, USA, June 21–25, 2009.

  • A. Branner, R.B. Stein, R.A. Normann, Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes. J Neurophysiol 85, 1585–94 (2001)

    Google Scholar 

  • P.K. Campbell, K.E. Jones, R.J. Huber, K.W. Horch, R.A. Normann, A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans Biomed. Eng. 38, 758–768 (1991)

    Article  Google Scholar 

  • T.K. Chowdhury, Fabrication of extremely fine glass micropipette electrodes. J Phys E Sci Instrum 2, 1087–1090 (1969)

    Article  Google Scholar 

  • K.L. Drake, K.D. Wise, J. Farraye, D.J. Anderson, S.L. BeMent, Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. IEEE Trans. Biomed. Eng. 35, 719 (1988)

    Article  Google Scholar 

  • D.J. Edell, V. Toi, V.M. McNeil, D. Clark, Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex. IEEE Trans.Biomed .Eng 39, 635–643 (1992)

    Article  Google Scholar 

  • T.A. Fofonoff, S.M. Martel, N.G. Hatsopoulos, J.P. Donoghue, I.W. Hunter, Microelectrode array fabrication by electrical discharge machining and chemical etching. IEEE Trans. Biomed. Eng. 6, 890–895 (2004)

    Article  Google Scholar 

  • S. Gagne, R. Plamondon, Open tip glass microelectrodes: conduction through the wall at the tip. IEEE Trans Biomed Eng 4, 56–61 (1987)

    Article  Google Scholar 

  • J.-M. Hsu, S. Kammer, E. Jung, L. Rieth, R.A. Normann, F. Solzbacher, Characterization of parylene-C film as an encapsulation material for neural interface devices (Borovets, Bulgaria, 2007). presented at 4M2007 Conference on Multi-Material Micro Manufacture

    Google Scholar 

  • J.-M. Hsu, L. Rieth, R.A. Normann, P. Tathireddy, F. Solzbacher, Encapsulation of an integrated neural interface device with parylene-C. IEEE Trans. Biomed. Eng. 55, 1–7 (2008)

    Google Scholar 

  • K. Jones, P. Campbell, R. Normann, A glass/silicon composite intracortical electrode array. Ann Biomed Eng 20, 423–437 (1992)

    Article  Google Scholar 

  • S. Kim, R. Bhandari, M. Klein, S. Negi, L. Rieth, P. Tathireddy, M. Toepper, H. Oppermann, F. Solzbacher, Integrated Wireless Neural Interface Based on the Utah Electrode Array. Biomedical Microdevices, doi: 10.1007/s10544-008-9251-y, (2008)

  • D. Kipke, R. Vetter, J. Williams, J. Hetke, Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. IEEE Trans Neural Syst Rehabil Eng 11, 151–155 (2003)

    Article  Google Scholar 

  • A. Manduca, T.E. Oliphant, M.A. Dresner, J.L. Mahowald, S.A. Kruse, E. Amromin, J.P. Felmlee, J.F. Greenleaf, R.L. Ehman, Magnetic resonance elastography: non-invasive mapping of Ttissue elasticity. Med Image Anal 5, 237–254 (2001)

    Article  Google Scholar 

  • M. Mojarradi, D. Binkley, B. Blalock, R. Andersen, N. Ulshoefer, T. Johnson, D.C. Linda, A miniaturized neuroprosthesis suitable for implantation into the brain. IEEE Trans Neural Syst Rehabil Eng 11, 38–42 (2003)

    Article  Google Scholar 

  • S. Musallam, M.J. Bak, P.R. Troyk, R.A. Andersen, A floating metal microelectrode array for chronic implantation. J Neurosci 160, 122–127 (2007)

    Google Scholar 

  • S. Negi, R. Bhandari, L. Rieth, and F. Solzbacher. Effect of sputtering pressure on pulsed-DC sputtered iridium oxide films for neuroprosthetic applications. Sensors & Actuators B Chem, doi:10.1016/j.snb.2008.11.015, (2008)

  • D.A. Robinson, The electrical properties of metal microelectrodes. Proceedings of the IEEE 56, 1065–1071 (1968)

    Article  Google Scholar 

  • P.J. Rousche, R.A. Normann, A method for pneumatically inserting an array of penetrating electrodes into cortical tissue. Ann Biomed Eng 20, 413–22 (1992)

    Article  Google Scholar 

  • O.F. Schanne, M. Lavallee, R. Laprade, S. Gagne, Electrical properties of glass microelectrodes. Proceedings of the IEEE 56, 1072–1082 (1968)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by NIH/NINDS Contract HHSN265200423621C and by DARPA under Contract N66001-06-C-8005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajmohan Bhandari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhandari, R., Negi, S. & Solzbacher, F. Wafer-scale fabrication of penetrating neural microelectrode arrays. Biomed Microdevices 12, 797–807 (2010). https://doi.org/10.1007/s10544-010-9434-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9434-1

Keywords

Navigation