Skip to main content
Log in

Quantification of the activity of biomolecules in microarrays obtained by direct laser transfer

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The direct-writing technique laser-induced forward transfer has been employed for the micro-array printing of liquid solutions of the enzyme horseradish peroxidase and the protein Titin on nitrocellulose solid surfaces. The effect of two UV laser pulse lengths, femtosecond and nanosecond has been studied in relation with maintaining the activity of the transferred biomolecules. The quantification of the active biomolecules after transfer has been carried out using Bradford assay, quantitative colorimetric enzymatic assay and fluorescence techniques. Spectrophotometric measurements of the HRP and the Titin activity as well as chromatogenic and fluorescence assay studies have revealed a connection between the properties of the deposited, biologically active biomolecules, the experimental conditions and the target composition. The bioassays have shown that up to 78% of the biomolecules remained active after femtosecond laser transfer, while this value reduced to 54% after nanosecond laser transfer. The addition of glycerol in a percentage up to 70% in the solution to be transferred has contributed to the stabilization of the micro-array patterns and the increase of their resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • L.R. Allain, D.N. Stratis-Cullum, T. Vo-Dinh, Anal. Chim. Acta. 518, 77–85 (2004)

    Article  Google Scholar 

  • P. Arenkov, A. Kukhtin, A. Gemmell, S. Voloshchuk, V. Chupeeva, A. Mirzabekov, Anal. Biochem. 278, 123–131 (2000)

    Article  Google Scholar 

  • N.V. Avseenko, T.Y. Morozova, F.I. Ataullakhanov, V.N. Morozov, Anal. Chem. 73, 6047–6052 (2001)

    Article  Google Scholar 

  • J.A. Barron, B.R. Ringeisen, H. Kim, B.J. Spargo, D.B. Chrisey, Thin Solid Films 453–454, 383–387 (2004)

    Article  Google Scholar 

  • J.A. Barron, H.D. Young, D.D. Dlott, M.M. Darfler, D.B. Krizman, B.R. Ringeisen, Proteomics 5, 4138–4144 (2005a)

    Article  Google Scholar 

  • J.A. Barron, D.B. Krizman, B.R. Ringeisen, Ann. Biomed. Eng. 33, 121–130 (2005b)

    Article  Google Scholar 

  • S. Borini, M. Staiano, M. Rocchia, A.M. Rossi, M. Rossi, S. D’Auria, Recent Patents on DNA & Gene Sequences 1, 1–7 (2007)

    Article  Google Scholar 

  • M.M. Bradford, Anal. Biochem. 72, 248–254 (1976)

    Article  Google Scholar 

  • M. Colina, P. Serra, J.M. Fernández-Pradas, L. Sevilla, J.L. Morenza, Biosens. Bioelectron. 20, 1638–1642 (2005)

    Article  Google Scholar 

  • M. Colina, M. Duocastella, J.M. Fernández-Pradas, P. Serra, J.L. Morenza, J. Appl. Phys. 99(084909), 1–7 (2006)

    Google Scholar 

  • V. Dinca, M. Farsari, D. Kafetzopoulosc, A. Popescu, M. Dinescu, C. Fotakis, Thin Solid Films, (2008) in press DOI 10.1016/j.tsf.2008.02.043

  • J.M. Fernández-Pradas, M. Colina, P. Serra, J. Domínguez, J.L. Morenza, Thin Solid Films 453–454, 27–30 (2004)

    Article  Google Scholar 

  • A.P. Gunning, A.R. Mackie, P.J. Wilde, V.J. Morris, Surf. Interface Anal. 27, 433–436 (2004)

    Article  Google Scholar 

  • B. Hopp, T. Smausz, N. Kresz, N. Barna, Z. Bor, L. Kolozsvari, D.B. Chrisey, A. Szabo, A. Nogradi, Tissue Eng. 11, 1817–1823 (2005)

    Article  Google Scholar 

  • A. Karaiskou, I. Zergioti, C. Fotakis, M. Kapsetaki, D. Kafetzopoulos, Appl. Surf. Sci. 208–209, 245–249 (2003)

    Article  Google Scholar 

  • K.N. Lee, D.S. Shin, Y.S. Lee, Y.K. Kim, J. Micromech. Microeng. 13, 18–25 (2003)

    Article  Google Scholar 

  • A.R. Mackie, A.P. Gunning, P.J. Wilde, V.J. Morris, J. Colloid. Interface Sci. 210, 157–166 (1999)

    Article  Google Scholar 

  • B.D. Martin, B.P. Gaber, C.H. Patterson, D.C. Turner, Langmuir 14, 3971–3975 (1998)

    Article  Google Scholar 

  • M. Mrksich, G.M. Whitesides, Trends Biotechnol. 13, 228–235 (1995)

    Article  Google Scholar 

  • W. Norde, Adv. Colloid Interface Sci. 25(4), 267–340 (1986)

    Article  Google Scholar 

  • K. Prime, G. Whitesides, J. Am. Chem. Soc. 115, 10714–10721 (1993)

    Article  Google Scholar 

  • B.R. Ringeisen, P.K. Wu, H. Kim, A. Pique, R.Y.C. Auyeung, H.D. Young, D.B. Chrisey, D.B. Krizman, Biotechnol. Prog. 18, 1126–1129 (2002)

    Article  Google Scholar 

  • A. Roda, M. Guardigli, C. Russo, P. Pasini, M. Baraldini, BioTechniques 28, 492–496 (2000)

    Google Scholar 

  • S. Seong, C. Choi, Proteomics 3, 2176–2189 (2003)

    Article  Google Scholar 

  • P. Serra, M. Colina, J.M. Fernández-Pradas, L. Sevilla, J.L. Morenza, Appl. Phys. Lett. 85, 1639–1641 (2004)

    Article  Google Scholar 

  • P. Serra, J.M. Fernández-Pradas, M. Colina, M. Duocastella, J. Domínguez, J.L. Morenza, J. Laser Micro/Nanoeng. 1, 236–242 (2006)

    Google Scholar 

  • A. Sethuraman, M. Han, R. Kane, G. Belfor, Langmuir 20, 7779–7788 (2004)

    Article  Google Scholar 

  • D.B. Volkin, A.M. Klibanov, J. Biol. Chem. 262(7), 2945–2950 (1987) Mar

    Google Scholar 

  • I. Zergioti, D.G. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, A. Rode, Appl. Surf. Sci. 177, 208–209 (2003)

    Google Scholar 

  • I. Zergioti, A. Karaiskou, D.G. Papazoglou, C. Fotakis, M. Kapsetaki, D. Kafetzopoulos, Appl. Phys. Lett. 86, 163902 (2005)

    Article  Google Scholar 

Download references

Acknowledgment

This work forms part of a research program funded by EU Marie Curie Fellowship Program: Advanced Training in Laser Sciences (MEST-CT-2004-008048), in IESL-FORTH, Heraklion, Crete, Greece.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Farsari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinca, V., Ranella, A., Farsari, M. et al. Quantification of the activity of biomolecules in microarrays obtained by direct laser transfer. Biomed Microdevices 10, 719–725 (2008). https://doi.org/10.1007/s10544-008-9183-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-008-9183-6

Keywords

Navigation