Skip to main content
Log in

Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We demonstrate the use of surface Zeta potential measurements as a new tool to investigate the interactions of iron oxide nanoparticles and cowpea mosaic virus (CPMV) nanoparticles with human normal breast epithelial cells (MCF10A) and cancer breast epithelial cells (MCF7) respectively. A substantial understanding in the interaction of nanoparticles with normal and cancer cells in vitro will enable the capabilities of improving diagnostic and treatment methods in cancer research, such as imaging and targeted drug delivery. A theoretical Zeta potential model is first established to show the effects of binding process and internalization process during the nanoparticle uptake by cells and the possible trends of Zeta potential change is predicted for different cell endocytosis capacities. The corresponding changes of total surface charge of cells in the form of Zeta potential measurements were then reported after incubated respectively with iron oxide nanoparticles and CPMV nanoparticles. As observed, after MCF7 and MCF10A cells were incubated respectively with two types of nanoparticles, the significant differences in their surface charge change indicate the potential role of Zeta potential as a valuable biological signature in studying the cellular interaction of nanoparticles, as well as specific cell functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • C. Alexiou, W. Arnold, R.J. Klein, F.G. Parak, P. Hulin, C. Bergemann, W. Erhardt, S. Wagenpfeil, A.S. Lubbe, Cancer Res 60, 6641–6648 (2000)

    Google Scholar 

  • G. Altankov, K. Richau, T. Groth, Mater.wiss. Werkst.tech 34, 1120–1128 (2003)

    Article  Google Scholar 

  • L. Babes, B. Denizot, G. Tanguy, J. Le, J. Jean, P. Jallet, J. Colloid Interface Sci 212, 474–482 (1999)

    Article  Google Scholar 

  • C.C. Berry, A.S. Curtis, J. Phys., D, Appl. Phys 36, R198–R206 (2003)

    Article  Google Scholar 

  • A.S. Blum, C.M. Soto, C.D. Wilson, J.D. Cole, M. Kim, B. Gnade, A. Chatterji, W.F. Ochoa, T.J. Lin, J.E. Johnson, B.R. Ratna, Nano Lett 4, 867–870 (2004)

    Article  Google Scholar 

  • B.D. Chithrani, A.A. Ghazani, W.C.W. Chan, Nano Lett 6, 662–668 (2006)

    Article  Google Scholar 

  • R. Coleman, J.B. Finean, Comp. Biochem 23, 99–126 (1968)

    Google Scholar 

  • G.M.W. Cook, W. Jacobson, Biochem. J 107, 549–557 (1968)

    Google Scholar 

  • G.M. Cooper, The Cell: a Molecular Approach, 2nd edn. (ASM Press, Washington D.C, 2000)

    Google Scholar 

  • A. Dyal, K. Loos, M. Noto, S.W. Chang, C. Spagnoli, K.V. Shafi, A. Ulman, M. Cowman, R.A. Gross, J. Am. Chem. Soc 125, 1684–1685 (2003)

    Article  Google Scholar 

  • I. Ermolina, J. Milner, H. Morgan, Electrophoresis 27, 3939–3948 (2006)

    Article  Google Scholar 

  • A. Fontes, H.P. Fernandes, M.L. Barjas Castro, A.A. de Thomaz, L.Y. Pozzo, L.C. Barbosa, C.L. Cesar, Microsc. Microanal 12, 1758–1759 (2006)

    Article  Google Scholar 

  • A.K. Gupta, M. Gupta, Biomaterials 26, 3995–4021 (2005)

    Article  Google Scholar 

  • A.K. Gupta, S. Wells, IEEE Trans. Nanobiosci 3, 66–73 (2004)

    Article  Google Scholar 

  • R. Hergt, W. Andra, C.G. d’Ambly, I. Hilger, W.A. Kaiser, U. Richter, H. Schmidt, IEEE Trans. Magn 34, 3745–3754 (1998)

    Article  Google Scholar 

  • R.J. Hunter, Zeta Potential in Colloid Science Principles and Applications (Academic Press Inc, 1981)

  • T.K. Jain, M.A. Morales, S.K. Sahoo, D.L. Leslie-Pelecky, V. Labhasetwar, Mol. Pharmacol 2, 194–205 (2005)

    Article  Google Scholar 

  • K.J. Koudelka, C.S. Rae, M.J. Gonzalez, M. Manchester, J Virol 81, 1632–1640 (2007)

    Article  Google Scholar 

  • H. Lee, E. Lee, D.K. Kim, N.K. Jang, Y.Y. Jeong, S. Jon, J. Am. Chem. Soc 128, 7383–7389 (2006)

    Article  Google Scholar 

  • J.D. Lewis, G. Destito, A. Zijlstra, M. Gonzalez, J. Quigley, M. Manchester, H. Stuhlmann, Nat. Med 12, 354–360 (2006)

    Article  Google Scholar 

  • L.K. Limbach, Y. Li, R.N. Grass, T.J. Brunner, M.A. Hintermann, M. Muller, D. Gunther, W.J. Stark, Environ. Sci. Technol 39, 9370–9376 (2005)

    Article  Google Scholar 

  • D. Lin, L. Zhong, S. Yao, Biotechnol. Bioeng 95, 185–191 (2006)

    Article  Google Scholar 

  • G.P. Lomonossoff, W.D.O. Hamilton, Curr. Top. Microbiol. Immunol 240, 177–189 (1999)

    Google Scholar 

  • M. Manchester, P. Singh, Adv. Drug Deliv. Rev 58, 1505–1522 (2006)

    Article  Google Scholar 

  • H. Pardoe, P.R. Clark, T.G. St Pierre, P. Moroz, S.K. Jones, Magn. Reson. Imaging 21, 483–488 (2003)

    Article  Google Scholar 

  • J.M. Perez, T. O’Loughin, F.J. Simeone, R. Weissleder, L. Josephson, J. Am. Chem. Soc 124, 2856–2857 (2002)

    Article  Google Scholar 

  • F.C. Siliva Filho, A.B. Santos, T.M. de Carvalho, W. de Souza, J. Leukoc. Biol 41, 143–149 (1987)

    Google Scholar 

  • F. Sonvico, S. Mornet, S. Vasseur, C. Dubernet, D. Jaillard, J. Degrouard, J. Hoebeke, E. Duguet, P. Colombo, P. Couvreur, Bioconjug. Chem 16, 1181–1188 (2005)

    Article  Google Scholar 

  • B. Veronesi, H. Colin, L. Lee, M. Oortgiesen, Toxicol. Appl. Pharmacol 178, 144–154 (2002)

    Article  Google Scholar 

  • C. Wilhelm, F. Gazeau, J. Roger, J.N. Pons, J.-C. Bacri, Langmuir 18, 8148–8155 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this project provided by the Center of Excellence of Nanotechnology for Treatment, Understanding, and Monitoring of Cancer (NANO-TUMOR) has been gratefully acknowledged. We thank Dr. Maria Jose of the Moores Cancer Center at UC, San Diego (UCSD) for technical assistance in cell culture and Mr. Stephen McDaniel for preparing microtome cell slides for transmission electron microscopy. We also thank Dr. Sadik Esener and Michael Heller of UCSD for helpful discussions on cell surface charge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cengiz S. Ozkan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Yang, M., Portney, N.G. et al. Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomed Microdevices 10, 321–328 (2008). https://doi.org/10.1007/s10544-007-9139-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9139-2

Keywords

Navigation