Skip to main content
Log in

Mercury toxicity, molecular response and tolerance in higher plants

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Mercury (Hg) contamination in soils has become a great concern as a result of its natural release and anthropogenic activities. This review presents broad aspects of our recent understanding of mercury contamination and toxicology in plants including source of Hg contamination, toxicology, tolerant regulation in plants, and minimization strategy. We first introduced the sources of mercury contamination in soils. Mercury exists in different forms, but ionic mercury (Hg2+) is the predominant form in soils and readily absorbed by plants. The second issue to be discussed is the uptake, transport, and localization of Hg2+ in plants. Mercury accumulated in plants evokes severe phytotoxicity and impairs numerous metabolic processes including nutrient uptake, water status, and photosynthesis. The mechanisms of mercury-induced toxicology, molecular response and gene networks for regulating plant tolerance will be reviewed. In the case of Hg recent much progress has been made in profiling of transcriptome and more importantly, uncovering a group of small RNAs that potentially mediates plant tolerance to Hg. Several newly discovered signaling molecules such as nitric oxide and carbon monoxide have now been described as regulators of plant tolerance to Hg. A recently emerged strategy, namely selection and breeding of plant cultivars to minimize Hg (or other metals) accumulation will be discussed in the last part of the review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali MB, Vajpayee P, Tripathi RD, Rai UN, Kumar A, Singh N, Behl HM, Singh SP (2000) Mercury bioaccumulation induces oxidative stress and toxicity to submerged macrophyte Potamogeton crispus L. Bull Environ Contam Toxicol 65:573–582

    Article  PubMed  CAS  Google Scholar 

  • Arao T, Ishikawa S (2006) Genotypic differences incadmiumconcentration and distribution of soybeans and rice. Japan Agri Res Quarterly 40:21–30

    CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bartha B, Kolbert Z, Erdei L (2005) Nitric oxide production induced by heavy metals in Brassica juncea L. Czern. and Pisum sativum L. Proceedings of the 8th Hungarian congress on plant physiology and the 6th Hungarian conference on photosynthesis, Vol. 49. Acta Biologica Szegediensis, pp. 9– 12

  • Becher M, Talke IN, Krall L, Kramer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268

    Article  PubMed  CAS  Google Scholar 

  • Besson-Bard A, Gravot A, Richaud P, Auroy P, Duc C, Gaymard F, Taconnat L, Renou JP, Pugin A, Wendehenne D (2009) Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol 149:1302–1315

    Article  PubMed  CAS  Google Scholar 

  • Boczkowski J, Poderoso JJ, Motterlini R (2006) CO-metal interaction: vital signaling from a lethal gas. Trend Biochem Sci 31:614–621

    Article  PubMed  CAS  Google Scholar 

  • Cargnelutti D, Tabaldi LA, Spanevello RM, de Oliveira Jucoski G, Battisti V, Redin M, Linares CEB, Dressler VL, de Moraes Flores ÉM, Nicoloso FT, Morsch VM, Schetinger MR (2006) Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere 65:999–1006

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Shiyab S, Han FX, Monts DL, Waggoner CA, Yang Z, Su Y (2009a) Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata. Ecotoxicology 18:110–121

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Yang ZM, Su Y, Han FX, Monts DL (2009b) Phytoremediation of heavy metal/metalloid-contaminated soils. In: Steinberg RV (ed) Contaminated soils: environmental impact, disposal and treatment. Nova Science Publishers, New York, pp 181–260

    Google Scholar 

  • Cho UH, Park JO (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156:1–9

    Article  PubMed  CAS  Google Scholar 

  • Choudhury S, Panda SK (2004) Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza sativa L. roots. Bulg J Plant Physiol 30:95–110

    CAS  Google Scholar 

  • Clarke JM, McCaig TN, DePauw RM, Knox RE, Clarke RE, Fernandez MR (2006) Registration of ‘Strongfield’ durum wheat. Crop Sci 46:2306–2307

    Article  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  PubMed  CAS  Google Scholar 

  • Costa S, Crespo D, Henriques B, Pereira E, Duarte A, Pardal M (2011) Kinetics of mercury accumulation and its effects on Ulva lactuca growth rate at two salinities and exposure conditions. Water Air Soil Pollut 217:689–699

    Article  CAS  Google Scholar 

  • Davis SJ, Bhoo SH, Durski AM, Walker JM, Vierstra RD (2001) The heme-oxygenase family required for phytochrome chromophore biosynthesis is necessary for proper photomorphogenesis in higher plants. Plant Physiol 126:656–669

    Article  PubMed  CAS  Google Scholar 

  • De Michele R, Vurro E, Rigo C, Costa A, Elviri L, Di Valentin M, Careri M, Zottini M, Sanita di Toppi L, Lo Schiavo F (2009) Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures. Plant Physiol 150:217–228

    Article  PubMed  CAS  Google Scholar 

  • De Temmerman L, Claey N, Roekens E, Guns M (2007) Biomonitoring of airborne mercury with perennial ryegrass cultures. Environ Pollut 146:458–462

    Article  PubMed  CAS  Google Scholar 

  • De Temmerman L, Waegeneers N, Claey N, Roekens E (2009) Comparison of concentrations of mercury in ambient air to its accumulation by leafy vegetables: an improtant step in terrestrial food chain analysis. Environ Pollut 157:1337–1341

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Chen Z, Zhu C (2011) Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). J Exp Bot 62:3563–3573

    Article  PubMed  CAS  Google Scholar 

  • Du X, Zhu YG, Liu WJ, Zhao XS (2005) Uptake of mercury (Hg) by seedlings of rice (Oryza sativa L.) grown in solution culture and interactions with arsenate uptake. Environ Exp Bot 54:1–7

    Article  CAS  Google Scholar 

  • Elbaz A, Wei YY, Meng Q, Zheng Q, Yang ZM (2010) Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii. Ecotoxicology 19:1285–1293

    Article  PubMed  CAS  Google Scholar 

  • Emborg TJ, Walker JM, Noh B, Vierstra RD (2006) Multiple heme oxygenase family members contribute to the biosynthesis of the phytochrome chromophore in Arabidopsis. Plant Physiol 140:856–868

    Article  PubMed  CAS  Google Scholar 

  • Ericksen JA, Gustin MS (2004) Foliar exchange of mercury as function of soil and air mercury concentrations. Sci Total Environ 324:271–279

    Article  PubMed  CAS  Google Scholar 

  • Ericksen JA, Gustin MS, Schorran DE, Johnson DW, Lindberg SE, Coleman JS (2003) Accumulation of atmospheric mercury in forest foliage. Atmos Environ 37:1613–1622

    Article  CAS  Google Scholar 

  • Esteban E, Moreno E, Peñalosa J, Cabrero JI, Millán R, Zornoza P (2008) Short and long-term uptake of Hg in white lupin plants: kinetics and stress indicators. Environ Exp Bot 62:316–322

    Article  CAS  Google Scholar 

  • Fay L, Gustin MS (2007) Assessing the influence of different atmospheric and soil mercury concentrations on foliar mercury concentrations in a controlled environment. Water Air Soil Pollut 181:373–384

    Article  CAS  Google Scholar 

  • Freeman JL, Garcia D, Kim D, Hopf A, Salt DE (2005) Constitutively elevated salicylic acid signals glutathionemediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol 137:1082–1091

    Article  PubMed  CAS  Google Scholar 

  • Gao S, Ou-yang C, Tang L, Zhu JQ, Xu Y, Wang SH, Chen F (2010) Growth and antioxidant responses in Jatropha curcas seedling exposed to mercury toxicity. J Hazar Mater 182(516):591–597

    Article  CAS  Google Scholar 

  • Gas E, Flores-Perez U, Sauret-Gueto S, Rodriguez-Concepcion M (2009) Hunting for plant nitric oxide synthase provides new evidence of a central role for plastids in nitric oxide metabolism. Plant Cell 21:18–23

    Article  PubMed  CAS  Google Scholar 

  • Ge C, Ding Y, Wang Z, Wan D, Wang Y, Shang Q, Luo S (2009) Responses of wheat seedlings to cadmium, mercury and trichlorobenzene stresses. J Environ Sci 21:806–813

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Gisk B, Yasui Y, Kohchi T, Frankenberg-Dinkel N (2010) Characterization of the haem oxygenase protein family in Arabidopsis thaliana reveals a diversity of functions. Biochemical J 425:425–434

    Article  CAS  Google Scholar 

  • Gorfer M, Persak H, Berger H, Brynda S, Bandian D, Strauss J (2009) Identification of heavy metal regulated genes from the root associated ascomycete Cadophora finlandica using a genomic microarray. Mycol Res 113:1377–1388

    Article  PubMed  CAS  Google Scholar 

  • Grant CA, Clarke JM, Duguid S, Chaney RL (2008) Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci Total Environ 390:301–310

    Article  PubMed  CAS  Google Scholar 

  • Grennan AK (2009) Identification of genes involved in metal transport in plants. Plant Physiol 149:1623–1624

    Article  PubMed  CAS  Google Scholar 

  • Guo B, Liang YC, Zhu YG, Zhao FJ (2007) Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environ Pollut 147:743–749

    Article  PubMed  CAS  Google Scholar 

  • Guo K, Xia K, Yang ZM (2008) Regulation of tomato lateral root development by carbon monoxide and involvement in auxin and nitric oxide. J Exp Bot 59:3443–3452

    Article  PubMed  CAS  Google Scholar 

  • Guo K, Kong WW, Yang ZM (2009) Carbon monoxide promotes root hair development in tomato. Plant, Cell Environ 32:1033–1045

    Article  CAS  Google Scholar 

  • Han FX, Banin A, Su Y, Monts DL, Plodinec MJ, Kingery WL, Triplett GE (2002) Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften 89:497–504

    Article  PubMed  CAS  Google Scholar 

  • Han FX, Su Y, Monts DL, Waggoner CA, Plodinec MJ (2006) Binding, distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennessee, USA. Sci Total Environ 368:753–768

    Article  PubMed  CAS  Google Scholar 

  • Heaton ACP, Rugh CL, Wang NJ, Meagher RB (2005) Physiological responses of transgenic merA-tobacco (Nicotiana tabacum) to foliar and root mercury exposure. Water Air Soil Polluti 161:137–155

    Article  CAS  Google Scholar 

  • Heidenreich B, Mayer K, Sandermann JR, Ernst D (2001) Mercury-induced genes in Arabidopsis thaliana: identification of induced genes upon long-term mercuric ion exposure. Plant, Cell Environ 24:1227–1234

    Article  CAS  Google Scholar 

  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette ML, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765

    Article  PubMed  CAS  Google Scholar 

  • Hsieh JL, Chen CY, Chiu MH, Chein MF, Chang JS, Endo G, Huang CC (2009) Expressing a bacterial mercuric ion binding protein in plant for phytoremediation of heavy metals. J Hazard Mater 161:920–925

    Article  PubMed  CAS  Google Scholar 

  • Hsu YH, Kao CH (2004) Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul 42:227–238

    Article  CAS  Google Scholar 

  • Hu KD, Hu LY, Li YH, Zhang FQ, Zhang H (2007) Protective roles of nitric oxide on germination and antioxidant metabolism in wheat seeds under copper stress. Plant Growth Regul 53:173–183

    Article  CAS  Google Scholar 

  • Huang B, Wang M, Yan L, Sun W, Zhao Y, Shi X, Weindorf DC (2011) Accumulation, transfer, and environmental risk of soil mercury in a rapidly industrializing region of the Yangtze River Delta, China. J Soils Sediment 11:607–618

    Article  CAS  Google Scholar 

  • Hylander LD, Meili M (2003) 500 years of mercury production: global annual inventory by region until 2000 and associated emissions. Sci Total Environ 304:13–27

    Article  PubMed  CAS  Google Scholar 

  • Israr M, Sahi S, Datta R, Sarkar D (2006) Bioaccumulation and physiological effects of mercury in Sesbania drummondii. Chemosphere 65:591–598

    Article  PubMed  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Ann Rev Plant Biol 57:19–53

    Article  CAS  Google Scholar 

  • Kazemi N, Khavari-Nejad RA, Fahimi H, Saadatmand S, Nejad-Sattari T (2010) Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress. Sci Hortic 126:402–407

    Article  CAS  Google Scholar 

  • Kolker A, Senior CL, Quick JC (2006) Mercury in coal and the impact of coal quality on mercury emissions from combustion systems. Appl Geochem 21:1821–1836

    Article  CAS  Google Scholar 

  • Kong WW, Zhang LP, Guo K, Liu ZP, Yang ZM (2010) Carbon monoxide improves adaptation of Arabidopsis to iron deficiency. Plant Biotechnol J 8:88–99

    Article  PubMed  CAS  Google Scholar 

  • Larssen T (2010) Mercury in Chinese reservoirs. Environ Pollut 158:24–25

    Article  PubMed  CAS  Google Scholar 

  • Lenti K, Fodor F, Boddi B (2002) Mercury inhibits the activity of the NADPH: protochlorophyllide oxidoreductase (POR). Photosynthetica 40:145–151

    Article  CAS  Google Scholar 

  • Li A, Mao L (2007) Evolution of plant microRNA gene families. Cell Res 17:212–218

    PubMed  CAS  Google Scholar 

  • Lindberg S, Bullock R, Ebinghaus R, Daniel E, Feng X, Fitzgerald W, Pirrone N, Prestbo E, Seigneur C (2007) A synthesis of progress and uncertainties in attributing the source of mercury in deposition. Ambio 36:19–32

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Zhou Q, Sun Y, Liu R (2009) Identification of Chinese cabbage genotypes with low cadmium accumulation for food safety. Environ Pollut 157:1961–1967

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Zhou Q, An JS, Liu R (2010) Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. J Hazard Mater 173:737–743

    Article  PubMed  CAS  Google Scholar 

  • Liu N, You J, Shi W, Liu W, Yang Z (2012) Salicylic acid involved in the process of aluminum induced citrate exudation in Glycine max L. Plant Soil 352:85–97

    Article  CAS  Google Scholar 

  • Lu LL, Tian SK, Yang XE, Li TQ, He ZL (2009) Cadmium uptake and xylem loading are active processes in the hyperaccumulator Sedum alfredii. J Plant Physiol 166:579–587

    Article  PubMed  CAS  Google Scholar 

  • Mazid M, Khan TA, Mohammad F (2011) Role of Nitric oxide in regulation of H2O2 mediating tolerance of plants to abiotic stress: a synergistic signalling approach. J Stress Physiol Biochem 7:34–74

    Google Scholar 

  • Meng DK, Chen J, Yang ZM (2011) Enhancement of tolerance of Indian mustard (Brassica juncea) to mercury by carbon monoxide. J Hazard Mater 186:1823–1829

    Article  CAS  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    Article  PubMed  CAS  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–489

    Article  PubMed  CAS  Google Scholar 

  • Millhollen AG, Gustin MS, Obrist D (2006a) Foliar mercury accumulation and exchange for three tree species. Environ Sci Technol 40:6001–6006

    Article  PubMed  CAS  Google Scholar 

  • Millhollen AG, Obrist D, Gustin MS (2006b) Mercury accumulation in grass and forb species as function of atmospheric carbon dioxide concentrations and mercury exposures in air and soil. Chemosphere 65:889–897

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Naito Y (2008) Introduction to serial review: heme oxygenase and carbon monoxide: medicinal chemistry and biological effects. J Clin Biochem Nutrit 42:76–77

    Article  Google Scholar 

  • Neill S, Bright J, Desikan R, Hancock J, Harrison J, Wilson I (2008) Nitric oxide evolution and perception. J Exp Bot 59:25–35

    Article  PubMed  CAS  Google Scholar 

  • Niu Z, Zhang X, Wang Z, Ci Z (2011) Field controlled experiemtns of mercury accumulation in crops from air and soil. Environ Pollut 159:2684–2689

    Article  PubMed  CAS  Google Scholar 

  • Ortega-Villasante C, Hernández LE, Rellán-Álvarez R, Del Campo FF, Carpena-Ruiz RO (2007) Rapid alteration of cellular redox homeostasis upon exposure to cadmium and mercury in alfalfa seedlings. New Phytol 176:96–107

    Article  PubMed  CAS  Google Scholar 

  • Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66:379–422

    Article  Google Scholar 

  • Phillips JR, Dalmay T, Bartels D (2007) The role of small RNAs in abiotic stress. FEBS Lett 581:3592–3597

    Article  PubMed  CAS  Google Scholar 

  • Rellán-Álvarez R, Ortega-Villasante C, Álvarez-Fernández A, del Campo FF, Hernández LE (2006) Stress responses of Zea mays to cadmium and mercury. Plant Soil 279:41–50

    Article  CAS  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pazmiño DM, Testillano PS, Risueño MC, Del Río LA, Sandalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229–243

    Article  PubMed  CAS  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928

    Article  PubMed  CAS  Google Scholar 

  • Ruiz ON, Alvarez D, Torres C, Roman L, Daniell H (2011) Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability. Plant Biotechnol J 9:609–617

    Article  PubMed  CAS  Google Scholar 

  • Sävenstrand H, Strid Ǻ (2004) Six genes strongly regulated by mercury in Pisum sativum roots. Plant Physiol Biochem 42:135–142

    Article  PubMed  CAS  Google Scholar 

  • Shekhawat GS, Verma K (2010) Haem oxygenase (HO): an overlooked enzyme of plant metabolism and defence. J Exp Bot 61:2255–2270

    Article  PubMed  CAS  Google Scholar 

  • Shen Q, Jiang M, Li H, Che LL, Yang ZM (2011) Expression of a Brassica napus heme oxygenase confers plant tolerance to mercury toxicity. Plant, Cell Environ 34:752–763

    Article  CAS  Google Scholar 

  • Shiyab S, Chen J, Han FX, Monts DL, Matta FB, Gu M, Su Y (2009a) Phytotoxicity of mercury in Indian mustard (Brassica juncea L.). Ecotox Environ Safe 72:619–625

    Article  CAS  Google Scholar 

  • Shiyab S, Chen J, Han FX, Monts DL, Matta FB, Gu M, Su Y, Masad MA (2009b) Mercury-induced oxidative stress in Indian mustard (Brassica juncea L.). Environ Toxicol 24:462–471

    Article  PubMed  CAS  Google Scholar 

  • Sierra MJ, Millán R, Esteban E (2009) Mercury uptake and distribution in Lavandula stoechas plants grown in soil from Almadén mining district (Spain). Food Chemical Toxicol 47:2761–2767

    Article  CAS  Google Scholar 

  • Singh HP, Batish DR, Kaur G, Arora K, Kohli RK (2008) Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environ Exp Bot 63:158–167

    Article  CAS  Google Scholar 

  • Singh HP, Kaur S, Batish DR, Sharma VP, Sharma N, Kohli RK (2009) Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide 20:289–297

    Article  PubMed  CAS  Google Scholar 

  • Sznopek JL, Goonan TG, The materials flow of mercury in the conomies of the United States and the world. US Geological Survey Circular 1197, version 1.0, Denver, Colorado, 2000, pp. 28

  • Tanaka KFS, Fujiwara T, Yoneyama T (2007) Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plant (Oryza sativa L.). Soil Sci Plant Nutrit 53:72–77

    Article  CAS  Google Scholar 

  • Terry MJ, Linley PJ, Kohchi T (2002) Making light if it: the role of plant haem oxygenases in phytochrome chromophore synthesis. Biochem Soc Trans 30:604–609

    Article  PubMed  Google Scholar 

  • Tian QY, Sun DH, Zhao MG, Zhang WH (2007) Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos. New Phytol 174:322–331

    Article  PubMed  CAS  Google Scholar 

  • van de Mortel J, Schat H, Moerland PD, Ver Loren van Themaat E, van Der Ent S, Blankestijn H, Ghandilyan A, Tsiatsiani S (2008) Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerlescens. Plant Cell Environ 31:301-324

  • Venkatachalam P, Srivastava AK, Raghothama KG, Sahi SV (2009) Genes induced in response to mercury-ion-exposure in heavy metal hyperaccumulator Sesbania drummondii. Environ Sci Technol 43:843–850

    Article  PubMed  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  PubMed  CAS  Google Scholar 

  • Vlot AC, Dempsey DMA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Ann Rev Phytopathol 47:177–206

    Article  CAS  Google Scholar 

  • Wang YD (2004) Phytoremediation of mercury by terrestrial plants. Department of Botany, PhD. Stockholm University, Sweden

  • Wang YD, Greger M (2004) Clonal differences in mercury tolerance, accumulation, and distribution in willow. J Environ Qual 33:1779–1785

    Article  PubMed  CAS  Google Scholar 

  • Wang YS, Yang ZM (2005) Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol 46:1915–1923

    Article  PubMed  CAS  Google Scholar 

  • Wang FJ, Zeng B, Sun ZX, Zhu C (2009) Relationship between proline and Hg(2+)-induced oxidative stress in a tolerant rice mutant. Arch Environ Contam Toxicol 56:723–731

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Yang L, Yang F, Li X, Song Y, Wang X, Hu X (2010) Involvements of H2O2 and metallothionein in NO-mediated tomato tolerance to copper toxicity. J Plant Physiol 167:1298–1306

    Article  PubMed  CAS  Google Scholar 

  • Weber M, Harada E, Vess C, Roepenack-Lahaye E, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281

    Article  PubMed  CAS  Google Scholar 

  • Wei YY, Zheng Q, Liu ZP, Yang ZM (2011) Regulation of tolerance of Chlamydomonas reinhardtii to heavy metal toxicity by heme oxygenase-1 and carbon monoxide. Plant Cell Physiol 52:1665–1675

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Wang S, Streets D, Hao J, Chan M, Jiang J (2006) Trends in anthropogenic mercury emissions in China from 1995 to 2003. Environ Sci Technol 40:5312–5318

    Article  PubMed  CAS  Google Scholar 

  • Xie FL, Huang SQ, Guo K, Zhu YY, Nie L, Yang ZM (2007) Computational identification of novel microRNAs and targets in Brassica napus. FEBS Lett 581:1464–1473

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, An L, Lu H, Zhu C (2009a) Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicelluloses contents in root cell wall. Planta 230:755–765

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Lu H, Lu K, Duan Y, An L, Zhu C (2009b) Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable for crown root primordia initiation in rice seedlings. Planta 230:599–610

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Yin H, Li Y, Liu X (2010) Nitric oxide is associated with long-term zinc tolerance in Solanum nigrum. Plant Physiol 154:1319–1334

    Article  PubMed  CAS  Google Scholar 

  • Xue YJ, Tao L, Yang ZM (2008) Aluminum-induced cell wall peroxidase activity and lignin synthesis are differentially regulated by jasmonate and nitric oxide. J Agricul Food Chem 56:9676–9684

    Article  CAS  Google Scholar 

  • Yamaguchi H, Fukuoka H, Arao T, Ohyama A, Nunome T, Miyatake K, Negoro S (2010) Gene expression analysis in cadmium-stressed roots of a low cadmium-accumulating solanaceous plant, Solanum torvum. J Exp Bot 61:423–437

    Article  PubMed  CAS  Google Scholar 

  • Yang ZM, Wang J, Wang SH, Xu LL (2003) Salicylic acid-induced aluminum tolerance by modulation of citrate efflux from roots of Cassia tora L. Planta 217:168–174

    PubMed  CAS  Google Scholar 

  • Yu H, Wang J, Fang W, Yuan J, Yang Z (2006) Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Sci Total Environ 370:302–309

    Article  PubMed  CAS  Google Scholar 

  • Zhang LP, Mehta SK, Liu ZP, Yang ZM (2008) Copper-induced proline synthesis is associated with nitric oxide generation in Chlamydomonas reinhardtii. Plant Cell Physiol 49:411–419

    Article  PubMed  CAS  Google Scholar 

  • Zheng Q, Meng Q, Wei YY, Yang ZM (2011) Alleviation of copper-induced oxidative damage in Chlamydomonas reinhardtii by carbon monoxide. Arch Environ Contam Toxicol 61:220–227

    Article  PubMed  CAS  Google Scholar 

  • Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorganic Biochem 101:1–9

    Article  CAS  Google Scholar 

  • Zhou ZS, Huang SQ, Yang ZM (2008a) Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula. Biochem Biophysical Res Commun 374:538–542

    Article  CAS  Google Scholar 

  • Zhou ZS, Wang SJ, Yang ZM (2008b) Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere 70:1500–1509

    Article  PubMed  CAS  Google Scholar 

  • Zhou ZS, Guo K, Elbaz AA, Yang ZM (2009) Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Mdicago sativa. Environ Exp Bot 65:27–34

    Article  CAS  Google Scholar 

  • Zhou ZS, Zeng HQ, Liu ZP, Yang ZM (2012a) Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. Plant, Cell Environ 35:86–99

    Article  Google Scholar 

  • Zhou ZS, Song JB, Yang ZM (2012b) Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium. J Exp Bot. doi:10.1093/jxb/ers136

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (20877041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Min Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Yang, Z.M. Mercury toxicity, molecular response and tolerance in higher plants. Biometals 25, 847–857 (2012). https://doi.org/10.1007/s10534-012-9560-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-012-9560-8

Keywords

Navigation