Skip to main content
Log in

Mechanisms of bacterial resistance to chromium compounds

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Chromium is a non-essential and well-known toxic metal for microorganisms and plants. The widespread industrial use of this heavy metal has caused it to be considered as a serious environmental pollutant. Chromium exists in nature as two main species, the trivalent form, Cr(III), which is relatively innocuous, and the hexavalent form, Cr(VI), considered a more toxic species. At the intracellular level, however, Cr(III) seems to be responsible for most toxic effects of chromium. Cr(VI) is usually present as the oxyanion chromate. Inhibition of sulfate membrane transport and oxidative damage to biomolecules are associated with the toxic effects of chromate in bacteria. Several bacterial mechanisms of resistance to chromate have been reported. The best characterized mechanisms comprise efflux of chromate ions from the cell cytoplasm and reduction of Cr(VI) to Cr(III). Chromate efflux by the ChrA transporter has been established in Pseudomonas aeruginosa and Cupriavidus metallidurans (formerly Alcaligenes eutrophus) and consists of an energy-dependent process driven by the membrane potential. The CHR protein family, which includes putative ChrA orthologs, currently contains about 135 sequences from all three domains of life. Chromate reduction is carried out by chromate reductases from diverse bacterial species generating Cr(III) that may be detoxified by other mechanisms. Most characterized enzymes belong to the widespread NAD(P)H-dependent flavoprotein family of reductases. Several examples of bacterial systems protecting from the oxidative stress caused by chromate have been described. Other mechanisms of bacterial resistance to chromate involve the expression of components of the machinery for repair of DNA damage, and systems related to the homeostasis of iron and sulfur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ackerley DF, Gonzalez CF, Park CH, Blake R, Keyhan M, Matin A (2004) Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Appl Environ Microbiol 70:873–882

    Article  PubMed  CAS  Google Scholar 

  • Ackerley DF, Barak Y, Lynch SV, Curtin J, Matin A (2006) Effect of chromate stress on Escherichia coli K-12. J Bacteriol 188:3371–3381

    Article  PubMed  CAS  Google Scholar 

  • Agarwal R, Bonnano JB, Burley SK, Swaminathan S (2006) Structure determination of an FMN-reductase from Pseudomonas aeruginosa PAO1 using sulfur anomalous signal. Acta Crystallogr D 62:383–391

    Article  PubMed  CAS  Google Scholar 

  • Aguilera S, Aguilar ME, Chávez MP, López-Meza JE, Pedraza-Reyes M, Campos-García J, Cervantes C (2004) Essential residues in the chromate transporter ChrA of Pseudomonas aeruginosa. FEMS Microbiol Lett 232:107–112

    Article  PubMed  CAS  Google Scholar 

  • Aiyar J, Berkovits HJ, Floyd RA, Wetterhahn KE (1991) Reaction of chromium(VI) with glutathione or with hydrogen peroxide: identification of reactive intermediates and their role in chromium(VI)-induced DNA damage. Environ Health Perspect 92:53–62

    Article  PubMed  CAS  Google Scholar 

  • Alvarez AH, Moreno-Sánchez R, Cervantes C (1999) Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. J Bacteriol 181:7398–7400

    PubMed  CAS  Google Scholar 

  • Anderson RA (1997) Chromium as an essential nutrient for humans. Regul Toxicol Pharmacol 26:535–541

    Article  Google Scholar 

  • Barak Y, Thorne SH, Ackerley DF, Lynch SV, Contag CH, Matin A (2006) New enzyme for reductive cancer chemotherapy, YieF, and its improvement by directed evolution. Mol Cancer Ther 5:97–103

    Article  PubMed  CAS  Google Scholar 

  • Bopp LH, Erlich HL (1988) Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch Microbiol 150:426–431

    Article  CAS  Google Scholar 

  • Bradley MT, Obraztsova AY (1998) Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV) and Fe(III) as electron acceptor. FEMS Microbiol Lett 162:193–198

    Article  Google Scholar 

  • Bridgewater LC, Manning FC, Woo ES, Patierno SR (1994) DNA polymerase arrest by adducted trivalent chromium. Mol Carcinog 9:122–133

    Article  PubMed  CAS  Google Scholar 

  • Brown SD, Thompson MR, VerBerkmoes NC, Chourey K, Shah M, Zhou J, Hettich RL, Thompson DK (2006) Molecular dynamics of the Shewanella oneidensis response to chromate stress. Mol Cell Proteomics 5:1054–1071

    Article  PubMed  CAS  Google Scholar 

  • Cary EE (1982) Chromium in air, soil and natural waters. In: Langard S (ed) Biological and environmental aspects of chromium. Elsevier, Amsterdam, pp 48–64

    Google Scholar 

  • Cervantes C, Ohtake H, Chu L, Misra T, Silver S (1990) Cloning, nucleotide sequence, and expression of the chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505. J Bacteriol 172:287–291

    PubMed  CAS  Google Scholar 

  • Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  PubMed  CAS  Google Scholar 

  • Cervantes C, Campos-Garcia J. (2007) Reduction and efflux of chromate by bacteria. In: Nies DH, Silver S (eds) Molecular Microbiology of Heavy Metals. Springer-Verlag, Berlin, pp 407–420

    Chapter  Google Scholar 

  • Chourey K, Thompson MR, Morrell-Falvey J, VerBerkmoes NC, Brown SD, Shah M, Zhou J, Doktycz M, Hettich RL, Thompson DK (2006) Global molecular and morphological effects of 24-hour chromium(VI) exposure on Shewanella oneidensis MR-1. Appl Environ Microbiol 72:6331–6344

    Article  PubMed  CAS  Google Scholar 

  • De Flora S (2000) Treshold mechanisms and site specificity in chromium (VI) carcinogenesis. Carcinogenesis 21:533–541

    Article  PubMed  Google Scholar 

  • Deller S, Sollener S, Trenker-El-Toukhy R, Jelesarov I, Gubitz GM, Macheroux P (2006) Characterization of a thermostable NADPH:FMN oxidoreductase from the mesophilic bacterium Bacillus subtilis. Biochemistry 45:7083–7091

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich HL (2002) How microbes mobilize metals in ores: A view of current understandings and proposals for further research. Miner Metall Process 19:220–224

    CAS  Google Scholar 

  • Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Assmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer EL, Bateman A (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34:D247–D251

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez CF, Ackerley DF, Lynch SV, Matin A (2005) ChrR, a soluble quinone reductase of Pseudomonas putida that defends against H2O2. J Biol Chem 280:22590–22595

    Article  PubMed  CAS  Google Scholar 

  • Hu P, Brodie EL, Suzuki Y, McAdams HH, Andersen GL (2005) Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J Bacteriol 187:8437–8449

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi Y, Cervantes C, Silver S (1990) Chromium reduction in Pseudomonas putida. Appl Environ Microbiol 56:2268–2270

    PubMed  CAS  Google Scholar 

  • Itoh M, Nakamura M, Suzuki T, Kawai K, Horitsu H, Takamizawa K (1995) Mechanism of chromium(VI) toxicity in Escherichia coli: is hydrogen peroxide essential in Cr(VI) toxicity? J Biochem 117:780–786

    PubMed  CAS  Google Scholar 

  • Jiménez-Mejía R, Campos-García J, Cervantes C (2006) Membrane topology of the chromate transporter ChrA of Pseudomonas aeruginosa. FEMS Microbiol Lett 262:178–184

    Article  PubMed  CAS  Google Scholar 

  • Juhnke S, Peitzsch N, Hubener N, Groβe C, Nies DH (2002) New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch Microbiol 179:15–25

    Article  PubMed  CAS  Google Scholar 

  • Kadiiska MB, Xiang QH, Mason RP (1994) In vivo free radical generation by chromium (VI): An electron resonance spin-trapping investigation. Chem Res Toxicol 7:800–805

    Article  PubMed  CAS  Google Scholar 

  • Katz SA, Salem H (1993) The toxicology of chromium with respect to its chemical speciation: a review. J Appl Toxicol 13:217–224

    Article  PubMed  CAS  Google Scholar 

  • Kawanishi S, Inoue S, Sano S (1986) Mechanism of DNA cleavage induced by sodium chromate (VI) in the presence of hydrogen peroxide. J Biol Chem 261:5952–5958

    PubMed  CAS  Google Scholar 

  • Khasim DI, Kumar NV, Hussain RC (1989) Environmental contamination of chromium in agricultural and animal products near a chromate industry. Bull Environ Contam Toxicol 43:742–746

    Article  PubMed  CAS  Google Scholar 

  • Kortenkamp A, O’Brien P, Beyersmann D (1991) The reduction of chromate is a prerequisite of chromium binding to cell nuclei. Carcinogenesis 12:1143–1144

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Kwak YH, Lee DS, Kim HB (2003) Vibrio harveyi nitroreductase is also a chromate reductase. Appl Environ Microbiol 69:4390–4395

    Article  PubMed  CAS  Google Scholar 

  • Laudenbach DE, Ehrhardt D, Green L, Grossman A (1991) Isolation and characterization of a sulfur-regulated gene encoding a periplasmically localized protein with sequence similarity to rhodanese. J Bacteriol 173:2751–2760

    PubMed  CAS  Google Scholar 

  • Levis AG, Bianchi V (1982) Mutagenic and cytogenetic effects of chromium compounds. In: Langard S (ed) Biological and environmental aspects of chromium. Elsevier, Amsterdam, pp 171–208

    Google Scholar 

  • Liger D, Graille M, Zhou CZ, Leulliot N, Quevillon-Cheruel S, Blondeau K, Janin J, Van Tilbeurgh H (2004) Crystal structure and functional characterization of yeast YLR011wp, an enzyme with NAD(P)H-FMN and ferric iron reductase activities. J Biol Chem 279:34890–34897

    Article  PubMed  CAS  Google Scholar 

  • Llagostera M, Garrido S, Guerrero R, Barbé J (1986) Induction of SOS genes of Escherichia coli by chromium compounds. Environ Mutagen 8:571–577

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR (1993) Dissimilatory metal reduction. Annu Rev Microbiol 47:263–290

    Article  PubMed  CAS  Google Scholar 

  • Luo H, Lu Y, Shi X, Mao Y, Dalal NS (1996) Chromium (IV)-mediated Fenton-like reaction causes DNA damage: implication to genotoxicity of chromate. Ann Clin Lab Sci 26:185–191

    PubMed  CAS  Google Scholar 

  • Masayasu S (1991) Effects of vitamins on chromium(VI)-induced damage. Environ Health Perspect 92:63–70

    Article  Google Scholar 

  • Mazoch J, Tesarik R, Sedlacek V, Kucera I, Turanek J (2004) Isolation and biochemical characterization of two soluble iron (III) reductases from Paracoccus denitrificans. Eur J Biochem 271:553–562

    Article  PubMed  CAS  Google Scholar 

  • Miranda AT, González MV, González G, Vargas E, Campos-García J, Cervantes C (2005) Involvement of DNA helicases in chromate resistance by Pseudomonas aeruginosa PAO1. Mutat Res 578:202–209

    PubMed  CAS  Google Scholar 

  • Moshtaghie AA, Ani M, Bazrafshan MR (1992) Comparative binding study of aluminum and chromium to human transferrin. Effect of iron. Biol Trace Elem Res 32:39–46

    Article  PubMed  CAS  Google Scholar 

  • Nicholson ML, Laudenbach DE (1995) Genes encoded on a cyanobacterial plasmid are transcriptionally regulated by sulfur availability and CysR. J Bacteriol 177:2143–2150

    PubMed  CAS  Google Scholar 

  • Nies A, Nies DH, Silver S (1990) Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant from Alcaligenes eutrophus. J Biol Chem 265:5648–5653

    PubMed  CAS  Google Scholar 

  • Nies DH, Koch S, Wachi S, Peitzsch N, Saier MH (1998) CHR, a novel family of prokaryotic proton motive force-driven transporters probably containing chromate/sulfate antiporters. J Bacteriol 180:5799–5802

    PubMed  CAS  Google Scholar 

  • Ohtake H, Fuji E, Toda K (1990) Bacterial reduction of hexavalent chromium: Kinetic aspects of chromate reduction by Enterobacter cloacae HO1. Biocatalysis 4:227–235

    Article  CAS  Google Scholar 

  • Ohtake H, Silver S (1994) Bacterial detoxification of toxic chromate. In: Chaudhry GR (ed) Biological degradation and bioremediation of toxic chemicals. Dioscorides, Portland, OR, pp 403–415

    Google Scholar 

  • Pao SS, Paulsen IT, Saier MH (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    PubMed  CAS  Google Scholar 

  • Park CH, Keyhan M, Wielinga B, Fendorf S, Matin A (2000) Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl Environ Microbiol 66:1788–1795

    Article  PubMed  CAS  Google Scholar 

  • Pimentel BE, Moreno-Sánchez R, Cervantes C (2002) Efflux of chromate by cells of Pseudomonas aeruginosa expressing the ChrA protein. FEMS Microbiol Lett 212:249–254

    Article  PubMed  CAS  Google Scholar 

  • Plaper A, Jenko-Brinovec S, Premzl A, Kos J, Raspor P (2002) Genotoxicity of trivalent chromium in bacterial cells. Possible effects on DNA topology. Chem Res Toxicol 15:943–949

    Article  PubMed  CAS  Google Scholar 

  • Puzon GJ, Petersen JN, Roberts AG, Kramer DM, Xun L (2002) A bacterial flavin reductase system reduces chromate to a soluble chromium(III)-NAD(+) complex. Biochem Biophys Res Commun 294:76–81

    Article  PubMed  CAS  Google Scholar 

  • Rai D, Sass BM, Moore DA (1987) Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorg Chem 26:345–349

    Article  CAS  Google Scholar 

  • Riley RG, Zachara JM, Wobber FJ (1992) Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research. Report DOE/ER-0547T. US Department of Energy, Washington, DC

    Google Scholar 

  • Riveros-Rosas H, Pfeifer GD, Lynam DR, Pedroza JL, Julián-Sánchez A, Canales O, Garfias J (1997) Personal exposure to elements in Mexico City air. Sci Total Environ 198:79–96

    Article  PubMed  CAS  Google Scholar 

  • Riveros-Rosas H, Julián-Sánchez A, Villalobos-Molina R, Pardo JP, Piña E (2003) Diversity, taxonomy and evolution of medium-chain dehydrogenase/reductase superfamily. Eur J Biochem 270:3309–3334

    Article  PubMed  CAS  Google Scholar 

  • Saier MH Jr (2003) Tracing pathways of transport protein evolution. Mol Microbiol 48:1145–1156

    Article  PubMed  CAS  Google Scholar 

  • Salnikow K, Zhitkovich A, Costa M (1992) Analysis of the binding sites of chromium to DNA and protein in vitro and in intact cells. Carcinogenesis 13:2341–2346

    Article  PubMed  CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  PubMed  CAS  Google Scholar 

  • Shi X, Dalal NS (1990) On the hydroxyl radical formation in the reaction between hydrogen peroxide and biologically generated chromium (V) species. Arch Biochem Biophys 277:342–350

    Article  PubMed  CAS  Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:53–89

    Article  Google Scholar 

  • Sparla F, Tedeschi G, Pupillo P, Trost P (1999) Cloning and heterologous expression of NAD(P)H:quinone reductase of Arabidopsis thaliana, a functional homologue of animal DT_diaphorase. FEBS Lett 463:382–386

    Article  PubMed  CAS  Google Scholar 

  • Sumner ER, Shanmuganathan S, Sideri TC, Willets SA, Houghton JE, Avery SV (2005) Oxidative protein damage causes chromium toxicity in yeast. Microbiology 151:1939–1948

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Yoda T, Ruhul A, Sugiura W (2001) Molecular cloning and characterization of the gene coding for azoreductase from Bacillus sp. OY1–2 isolated from soil. J Biol Chem 276:9059–9065

    Article  PubMed  CAS  Google Scholar 

  • Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41

    Article  PubMed  Google Scholar 

  • Tauch A, Schluter A, Bischoff N, Goesmann A, Meyer F, Puhler A (2003) The 79,370-bp conjugative plasmid pB4 consists of an IncP-1β backbone loaded with a chromate resistance transposon, the strA-strB streptomycin resistance gene pair, the oxacillinase gene bla NPS-1, and a tripartite antibiotic efflux system of the resistance-nodulation-division family. Mol Gen Genomics 268:570–584

    CAS  Google Scholar 

  • US Environmental Protection Agency (1998) Toxicological review of hexavalent chromium. CAS No. 18540–29–9. Washington, DC, 77 pp

  • Vincent JB (2004) Recent developments in the biochemistry of chromium (III). Biol Trace Elem Res 99:1–16

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Mori T, Toda K, Ohtake H (1990) Membrane-associated chromate reductase activity from Enterobacter cloacae. J Bacteriol 172:1670–1672

    PubMed  CAS  Google Scholar 

  • Wong PT, Trevors JT (1988) Chromium toxicity to algae and bacteria. In: Nriagu JO, Nieboer E (eds), Chromium in the natural and human environments. Wiley, New York, pp 305–315

    Google Scholar 

  • Zayed A, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156

    Article  CAS  Google Scholar 

  • Zhitkovich A, Voitkun V, Costa M (1996) Formation of the amino acid-DNA complexes by hexavalent and trivalent chromium in vitro: importance of trivalent chromium and the phosphate group. Biochemistry 35:7275–7282

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research in our laboratories was supported by grants from CIC (Universidad Michoacana) and CONACYT (No. 41712-Q).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha I. Ramírez-Díaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramírez-Díaz, M.I., Díaz-Pérez, C., Vargas, E. et al. Mechanisms of bacterial resistance to chromium compounds. Biometals 21, 321–332 (2008). https://doi.org/10.1007/s10534-007-9121-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-007-9121-8

Keywords

Navigation