Skip to main content
Log in

Assessment of microbial communities associated with fermentative–methanogenic biodegradation of aromatic hydrocarbons in groundwater contaminated with a biodiesel blend (B20)

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

A controlled field experiment was conducted to assess the potential for fermentative–methanogenic biostimulation (by ammonium-acetate injection) to enhance biodegradation of benzene, toluene, ethylbenzene and xylenes (BTEX) as well as polycyclic aromatic hydrocarbons (PAHs) in groundwater contaminated with biodiesel B20 (20:80 v/v soybean biodiesel and diesel). Changes in microbial community structure were assessed by pyrosequencing 16S rRNA analyses. BTEX and PAH removal began 0.7 year following the release, concomitantly with the increase in the relative abundance of Desulfitobacterium and Geobacter spp. (from 5 to 52.7 % and 15.8 to 37.3 % of total Bacteria 16S rRNA, respectively), which are known to anaerobically degrade hydrocarbons. The accumulation of anaerobic metabolites acetate and hydrogen that could hinder the thermodynamic feasibility of BTEX and PAH biotransformations under fermentative/methanogenic conditions was apparently alleviated by the growing predominance of Methanosarcina. This suggests the importance of microbial population shifts that enrich microorganisms capable of interacting syntrophically to enhance the feasibility of fermentative–methanogenic bioremediation of biodiesel blend releases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen TD, Kraus PF, Lawson PA, Drake GR, Balkwill DL, Tanner RS (2008) Desulfovibrio carbinoliphilus sp., a benzyl alcohol-oxidizing, sulfate-reducing bacterium isolated from a gas condensate-contaminated aquifer. Int J Syst Evol Microbiol 58(6):1313–1317

    Article  CAS  PubMed  Google Scholar 

  • Belova SE, Pankratov TA, Dedysh SN (2006) Bacteria of the genus Burkholderia as a typical component of the microbial community of Sphagnum peat bogs. Microbiology 75(1):90–96

    Article  CAS  Google Scholar 

  • Berdugo-Clavijo C, Dong X, Soh J, Sensen CW, Gieg LM (2012) Methanogenic biodegradation of two-ringed polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 81(1):124–133

    Article  CAS  PubMed  Google Scholar 

  • Blackbourne R, Vadivelu VM, Yuan Z, Keller J (2007) Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter. Water Res 41(14):3033–3042

    Article  Google Scholar 

  • Bodour AA, Wang JM, Brusseau ML, Maier RM (2003) Temporal change in culturable phenanthrene degraders in response to long-term exposure to phenanthrene in a soil column system. Environ Microbiol 5(10):888–895

    Article  CAS  PubMed  Google Scholar 

  • Bräuer SL, Cadillo-Quiroz H, Ward RJ, Yavitt JB, Zinder SH (2011) Methanoregula boonei gen. nov., sp. nov., an acidiphilic methanogen isolated from an acidic peat bog. Int J Syst Evol Microbiol 61(1):45–52

    Article  PubMed  Google Scholar 

  • Bruce T, Martinez IB, Neto OM, Vicente ACP, Kruger RH, Thompson FL (2010) Bacterial community diversity in the Brazilian Atlantic forest soils. Soil Microbiol 60(4):840–849

    CAS  Google Scholar 

  • Bryant MP, Campbell LL, Reddy CA, Crabill MR (1977) Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol 33(5):1162–1169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chauhan A, Ogram A (2006) Fatty acid-oxidizing consortia along a nutrient gradient in the Florida Everglades. Appl Environ Microbiol 72(4):2400–2406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coates JD, Lonergan DJ, Philips EJP, Jenter A, Lovley DR (1995) Desulfuromonas palmitatis sp., nov. A marine dissimilatory Fe(III) reducer that can oxidize long chain fatty acids. Arch Microbiol 164(6):406–413

    Article  CAS  PubMed  Google Scholar 

  • Coates JD, Ellis DJ, Gaw CV, Lovley DL (1999) Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int J Syst Evol Microbiol 49(4):1615–1622

    CAS  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:141–145

    Article  Google Scholar 

  • Cord-Ruwisch R, Lovley DR, Schink B (1998) Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl Environ Microbiol 64(6):2232–2236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Corseuil HX, Monier AL, Gomes APN, Chiaranda HS, Rosario M, Alvarez PJJ (2011) Biodegradation of soybean and castor oil biodiesel: implications on the natural attenuation of monoaromatic hydrocarbons in groundwater. Groundw Monit Remediat 31(3):111–118

    Article  CAS  Google Scholar 

  • Cramm R (2009) Genomic view of energy metabolism in Ralstonia eutropha H16. J Mol Microbiol Biotechnol 16(1–2):38–52

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Yokota A (2010) Curvibacter fontana sp. nov., a microaerobic bacteria isolated from well water. J Gen Appl Microbiol 56(3):267–271

    Article  CAS  PubMed  Google Scholar 

  • Dolfing J, Tiedje JM (1991) Acetate as a source of reducing equivalents in the reductive dechlorination of 2,5-dichlorobenzoate. Arch Microbiol 156(5):356–361

    Article  CAS  Google Scholar 

  • Dolfing J, Xu A, Gray ND, Larter SR, Head IM (2009) The thermodynamic landscape of methanogenic PAH degradation. Microb Biotechnol 2(5):566–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Galagan JE, Nusbaum C, Roy A, Endrizzi MG, MacDonalds P, Fitzhugh W, Calvo S, Engels R, Smirnov S, Atnoor D, Brown A, Allen N, Naylor J, Stange-Thomann N, Dearellano K, Johnson R, Linton L, Mcewan P, Mckernan K, Talamas J, Tirrell A, Ye WJ, Zimmer A, Barber RD, Cann I, Graham DE, Grahame DA, Guss AM, Hedderich R, Ingram-Smith C, Kuettner HC, Krzycki JA, Leigh JA, Li WX, Liu JF, Mukhopadhyay B, Reeve JN, Smith K, Springer TA, Umayam LA, White O, White RH, De Macario EC, Ferry JG, Jarrell KF, Jing H, Macario AJL, Paulsen I, Pritchett M, Sowers KR, Swanson RV, Zinder SH, Lander E, Metcalf WW, Birren B (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12(4):532–542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gantner S, Andersson AF, Alonso-Sáez L, Bertilsson S (2011) Novel primers for 16S rRNA-based archaeal community analyses in environmental samples. J Microbiol Methods 84(1):12–18

    Article  CAS  PubMed  Google Scholar 

  • Geissler A, Merroun M, Geipel G, Reuther H, Selenska-Pobell S (2009) Biogeochemical changes induced in uranium mining waste pile samples by uranyl nitrate treatments under anaerobic conditions. Geobiology 7(3):282–294

    Article  CAS  PubMed  Google Scholar 

  • Hatamono M, Imachi H, Yashiro Y, Ohashi A, Harada H (2007) Diversity of anaerobic microorganisms involved in long-chain fatty acid degradation in methanogenic sludges as revealed by RNA-based stable isotope probing. Appl Environ Microbiol 73(13):4119–4127

    Article  Google Scholar 

  • He Q, Sanford RA (2004) Acetate threshold concentrations suggest varying energy requirements during anaerobic respiration by Anaeromyxobacter dehalogenans. Appl Environ Microbiol 70(11):6940–6943

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, Eisen JA, Ward N, Methe B, Brinkac LM, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Fouts D, Haft DH, Selengut J, Peterson JD, Davidsen TM, Zafar N, Zhou L, Radune D, Dimitrov G, Hance M, Tran K, Khouri H, Gill J, Utterback TR, Feldblyum TV, Wall JD, Voordouw G, Fraser CM (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris. Nat Biotechnol 22(5):554–559

    Article  CAS  PubMed  Google Scholar 

  • Heimann A, Jakobsen R, Blodau C (2009) Energetics constraints on H2-dependent terminal electron accepting processes in anoxic environments: a review of observations and model approaches. Environ Sci Technol 44(1):24–33

    Article  Google Scholar 

  • Imachi H, Sekiguchi Y, Kamagata Y, Hanada S, Ohashi A, Harada H (2002) Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52(5):1729–1735

    Article  CAS  PubMed  Google Scholar 

  • Kloos WE (1980) Natural populations of the genus Staphylococcus. Annu Rev Microbiol 34:559–592

    Article  CAS  PubMed  Google Scholar 

  • Kunapuli U, Jahn MK, Lueders T, Geyer R, Hermann JH, Meckenstock RU (2010) Desulfitobacterium aromaticivorans sp. nov. and Gebacter toluenoxydans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. Int J Syst Evol Microbiol. 60(3):686–695

    Article  CAS  PubMed  Google Scholar 

  • Lalman JD (2000) Anaerobic degradation of linoleic (C18:2), oleic (C18:1) and stearic (C18:0) acids and their inhibitory effects on acidogens, acetogens and methanogens. Thesis. University of Toronto

  • Leandro T, França L, Nobre MF, Schumann P, Rosselló-Móra R, Costa MS (2012) Nevskia aquatilis sp. nov. and Nevskia persephonica sp. nov., isolated from a mineral water aquifer and the emended description of the genus Nevskia. Syst Appl Microbiol 35(5):297–301

    Article  PubMed  Google Scholar 

  • Liesack W, Bak F, Kreft JU, Stackebrandt E (1994) Holophaga foetida gen. nov. sp. nov., a new homoacetogenic bacterium degrading methoxylated aromatic compounds. Arch Microbiol 162(1–2):85–90

    CAS  PubMed  Google Scholar 

  • Lima G, Parker B, Meyer J (2012) Dechlorinating microorganisms in a sedimentary rock matrix contaminated with a mixture of VOCs. Environ Sci Technol 46(11):5756–5763

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Whitman WB (2008) Metabolic, phylogenetic and ecological diversity of the methanogenic archaea. Ann NY Acad Sci 1125(1):171–189

    Article  CAS  PubMed  Google Scholar 

  • Liu A, Garcia-Dominguez E, Rhine ED, Young LY (2004) A novel arsenate respiring isolate that can utilize aromatic substrates. FEMS Microbiol Ecol 48(3):323–332

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJP, Gorby YA, Goodwin S (1993) Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159(4):336–344

    Article  CAS  PubMed  Google Scholar 

  • Morris BEL, Henneberger R, Huber H, Moissl-Eichinger C (2013) Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev 37(3):384–406

    Article  CAS  PubMed  Google Scholar 

  • Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensissp nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermo-catenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Microbiol 51(2):433–446

    CAS  PubMed  Google Scholar 

  • Nevin KP, Lovley DR (2002) Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl Environ Microbiol 68(5):2294–2299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nossa CW, Obedorf WE, Yang L, AAS JA, Paster BJ, Desantis TZ, Brodie EL, Malamud D, Poles MA, Pei Z (2010) Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J Gastroenterol 16(33):4135–4144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Sullivan LA, Mahenthiralingam E (2005) Biotechnological potential within the genus Burkholderia. Lett Appl Microbiol 41(1):8–11

    Article  PubMed  Google Scholar 

  • Patureau D, Godon JJ, Bouchez T, Bernet N, Delgenes JP, Moletta R (1998) Microvirgula aerodenitrificans gen. nov., sp. nov., a new gram-negative bacterium exhibiting co-respiration of oxygen and nitrogen oxides up to oxygen-saturated conditions. Int J Syst Evol Microbiol 48(3):775–782

    CAS  Google Scholar 

  • Philippe G, Vega D, Bastide J (2001) Microbial hydrolysis of methyl aromatic esters by Burkholderia cepacia isolated from soil. FEMS Microbiol Ecol 37(3):251–258

    Article  CAS  Google Scholar 

  • Rakoczy J, Schleinitz KM, Müller N, Richnow HH, Vogt C (2011) Effects of hydrogen and acetate on benzene mineralization under sulphate-reducing conditions. FEMS Microbiol Ecol 77(2):238–247

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy S, Sass H, Langner H, Schumann P, Kroppenstedt RM, Spring S, Overmann J, Rosenzweig RF (2006) Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. Int J Syst Evol Microbiol 56(12):2729–2736

    Article  CAS  PubMed  Google Scholar 

  • Ramos DT, Da Silva MLB, Chiaranda HS, Alvarez PJJ, Corseuil HX (2013) Biostimulation of anaerobic BTEX biodegradation under fermentative methanogenic conditions at source-zone groundwater contaminated with a biodiesel blend (B20). Biodegradation 24(3):333–341

    Article  CAS  PubMed  Google Scholar 

  • Robertson WJ, Bowman JP, Franzmann PD, Mee BJ (2001) Desulfosporosinus meridiei sp. nov., a spore-forming sulfate-reducing bacterium isolated from gasoline-contaminated groundwater. Int J Syst Evol Microbiol 51:133–140

    CAS  PubMed  Google Scholar 

  • Sanford RA, Cole JR, Tiedje JM (2002) Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol 68(2):893–900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61(2):262–280

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shim H, Hwang B, Lee S, Kong S (2005) Kinetics of BTEX biodegradation by a coculture of Pseudomonas putida and Pseudomonas fluorescens under hypoxic conditions. Biodegradation 16(4):319–327

    Article  CAS  PubMed  Google Scholar 

  • Slobodkin AI (2005) Thermophilic microbial metal reduction. Microbiology 74(5):501–504

    Article  CAS  Google Scholar 

  • Smith KS, Ingram-Smith C (2007) Methanosaeta, the forgotten methanogen? Trends Microbiol 15(4):150–155

    Article  CAS  PubMed  Google Scholar 

  • Sousa DZM, Pereira AM, Stams AJM, Alves MM, Smidt H (2007) Microbial communities involved in anaerobic degradation of unsaturated or saturated long-chain fatty acids. Appl Environ Microbiol 73(4):1054–1064

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sousa DZM, Smidt H, Alves MM, Stams AJM (2009) Ecophysiology of syntrophic communities that degrade saturated and unsaturated long-chain fatty acids. FEMS Microbiol Ecol 68(3):257–272

    Article  CAS  PubMed  Google Scholar 

  • Spalding BP, Watson DB (2006) Measurement of dissolved H2, O2 and CO2 in groundwater using passive samplers for gas chromatographic analyses. Environ Sci Technol 40(24):7861–7867

    Article  CAS  PubMed  Google Scholar 

  • Spalding BP, Watson DB (2008) Passive sampling and analyses of common dissolved fixed gases in groundwater. Environ Sci Technol 42(10):3766–3772

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Stackebrandt E, Tohyama S, Eguchi T (2000) Desulfovirga adipica gen. nov., sp. nov., an adipate-degrading, gram-negative, sulfate-reducing bacterium. Int J Syst Evol Microbiol 50(2):639–644

    Article  CAS  PubMed  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41(1):100–180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Treude N, Rosencrantz D, Liesack W, Schnell S (2003) Strain FAc12, a dissimilatory iron-reducing member of the Anaeromyxobacter subgroup of Myxococcales. FEMS Microbiol Ecol 44(2):261–269

    Article  CAS  PubMed  Google Scholar 

  • van der Zaan BM, Saia FT, Stams AJM, Plugge CM, de Vos WM, Smidt H, Langenhoff AAM, Gerritse J (2012) Anaerobic benzene degradation under denitrifying conditions: Peptococcaceae as dominant benzene degraders and evidence for a syntrophic process. Environ Microbiol 14(5):1171–1181

    Article  PubMed  Google Scholar 

  • Villemur R, Lanthier M, Beaudet R, Lépine F (2006) The Desulfitobacterium genus. FEMS Microbiol Rev 30(5):706–733

    Article  CAS  PubMed  Google Scholar 

  • Wagner ID, Wiegel J (2008) Diversity of thermophilic anaerobes. Ann NY Acad Sci 1125(1):1–43

    Article  CAS  PubMed  Google Scholar 

  • Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J, Barabote RD, Bradley B, Brettin TS, Brinkac LM, Bruce D, Creasy T, Daugherty TM, Deboy RT, Detter JC, Dodson RJ, Durkin AS, Ganapathy A, Dwinn-Giglio M, Han CS, Khouri H, Kiss H, Kothari SP, Madupu R, Nelson KE, Nelson WC, Paulsen I, Penn K, Ren Q, Rosovitz MJ, Selengut JD, Shrivastava S, Sullivan SA, Tapia R, Thompson LS, Watkins KL, Yang Q, Yu C, Zafar N, Zhou L, Kuske CR (2009) Three genomes from the phylum Acidobacteria provide insight into lifestyles of these microorganisms in soils. Appl Environ Microbiol 75(7):2046–2056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Worm P, Müller N, Plugge CM, Stams AJM, Schink B (2011) Syntrophy in methanogenic degradation. Microbiol Monogr 19:143–173

    Article  Google Scholar 

  • Zhang X, Peterson C, Reece D, Moller G, Haws R (1998) Biodegradability of biodiesel in the aquatic environment. Trans Am Soc Agric Eng 41:1423–1430

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank PETROBRAS (Petróleo Brasileiro S/A) for the research financial support as well as CAPES (Coordination for the Improvement of Higher Level Education Personnel) and CNPq (National Council for Scientific and Technological Development) for providing scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Débora Toledo Ramos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, D.T., da Silva, M.L.B., Nossa, C.W. et al. Assessment of microbial communities associated with fermentative–methanogenic biodegradation of aromatic hydrocarbons in groundwater contaminated with a biodiesel blend (B20). Biodegradation 25, 681–691 (2014). https://doi.org/10.1007/s10532-014-9691-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-014-9691-4

Keywords

Navigation