Skip to main content
Log in

Evaluation of the bioremoval of Cr(VI) and TOC in biofilters under continuous operation using response surface methodology

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

In the present study, the bioremoval of Cr(VI) and the removal of total organic carbon (TOC) were achieved with a system composed by an anaerobic filter and a submerged biofilter with intermittent aeration using a mixed culture of microorganisms originating from contaminated sludge. In the aforementioned biofilters, the concentrations of chromium, carbon, and nitrogen were optimized according to response surface methodology. The initial concentration of Cr(VI) was 137.35 mg l−1, and a bioremoval of 85.23% was attained. The optimal conditions for the removal of TOC were 4 to 8 g l−1 of sodium acetate, >0.8 g l−1 of ammonium chloride and 60 to 100 mg l−1 of Cr(VI). The results revealed that ammonium chloride had the strongest effect on the TOC removal, and 120 mg l−1 of Cr(VI) could be removed after 156 h of operation. Moreover, 100% of the Cr(VI) and the total chromium content of the aerobic reactor output were removed, and TOC removals of 80 and 87% were attained after operating the anaerobic and aerobic reactors for 130 and 142 h, respectively. The concentrations of cells in both reactors remained nearly constant over time. The residence time distribution was obtained to evaluate the flow through the bioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ABNT (1997) Construção e Instalação de Fossa Séptica e Disposição dos Efluentes Finais, 1993, Versão Corrigida: 1997, NBR 7229. Rio de Janeiro, ABNT, Mar, 38p

  • Ahmad WA, Zakaria ZA, Khasim AR, Alias MA, Hasbullah ShaikM, Ismail Shaik (2010) Pilot-scale removal of chromium from industrial wastewater using the ChromeBac system. Bioresour Technol 101:4371–4378

    Article  PubMed  CAS  Google Scholar 

  • Alam Md Mahbub (2004) Bioreduction of hexavalent chromium: flow-through column experiments and reactive transport modeling, A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Civil Engineering, Washington State University, Department of Civil and Environmental Engineering, Aug 2004, p 175

  • APHA, AWWA, WEF (2005) Standard Methods for the examination of water and wastewater, 3500-Cr B., Colorimetric Method 21st edition. American Public Health Association, Washington, DC, pp 3–66

    Google Scholar 

  • Atkinson B, Mavituna F (1991) Biochemical engineering and biotechnology handbook. Stockton Press, New York

    Google Scholar 

  • Bankar AV, Kumar AR, Zinjarde SS (2009) Removal of chromium(VI) ions from aqueous solution by adsorption onto two marine isolates of Yarrowia lipolytica. J Hazard Mater 170:487–494

    Article  PubMed  CAS  Google Scholar 

  • Baral A, Engelken RD (2002) Chromium-based regulations and greening in metal finishing industries in the USA. Environ Sci Policy 5(2):121–133

    Article  CAS  Google Scholar 

  • Brunet FB, Touze S, Michel C, Ignatiadis I (2006) Treatment of chromate-polluted groundwater in a 200 dm3 pilot bioreactor fed with hydrogen. J Chem Technol Biotechnol 81(9):1506–1513

    Article  Google Scholar 

  • Cammarota MC, Sant’Anna GL Jr (1998) Metabolic blocking of exopolysaccharides synthesis: effects on microbial adhesion and biofilm accumulation. Biotechnol Lett 20(1):1–4

    Article  CAS  Google Scholar 

  • Chen Y, Gu G (2005) Preliminary studies on continuous Cr(VI) biological removal from wastewater by anaerobic–aerobic activated sludge process. Bioresour Technol 96:1713–1721

    Article  PubMed  CAS  Google Scholar 

  • Chen JM, Hao OJ (1998) Microbial Cr(VI) reduction. Crit Rev Environ Sci Technol 28(3):219–251

    Article  Google Scholar 

  • Chernicharo CA, de L (1997) Reatores anaeróbios. Departamento de Engenharia Sanitária e Ambiental, Belo Horizonte, p 246p

    Google Scholar 

  • Chirwa EMN, Wang Y (1997) Hexavalent chromium reduction by Bacillus sp. in a packed-bed bioreactor. Environ Sci Technol 31:1446–1451

    Article  CAS  Google Scholar 

  • CONAMA nº 397—Resolução, de 3 de abril de 2008 sobre qualidade da água. Publicada no DOU nº 66, de 7 de abril de 2008, Seção 1, páginas 68–69. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=563. Acessado em 06/03/2010

  • Córdoba A, Vargas P, Dussan J (2008) Chromate reduction by Arthrobacter CR47 in biofilm packed bed reactors. J Hazard Mater 151:274–279

    Article  PubMed  Google Scholar 

  • Dalcin MG, Pirete MM, Lemos DA, Ribeiro EJ, Cardoso VL, de Resende MM (2011) Evaluation of hexavalent chromium removal in a continuous biological filter with the use of central composite design (CCD). J Environ Manag 92:1165e1173

    Article  Google Scholar 

  • Dermou E, Vayenas DV (2008) Biological Cr(VI) reduction in a trickling filter under continuous operation with recirculation. J Chem Technol Biotechnol 83:871–877

    Article  CAS  Google Scholar 

  • Dermou E, Velissariou A, Xenos D, Vayenas DV (2005) Biological Cr(VI) reduction using a trickling filter. J Hazard Mater B126:78–85

    Article  Google Scholar 

  • Dermou E, Velissariou A, Xenos D, Vayenas DV (2007) Biological removal of hexavalent chromium in trickling filters operating with different filter media types. Desalination 211:156–163

    Article  CAS  Google Scholar 

  • Desai C, Jain K, Madamwar D (2008) Hexavalent chromate reductase activity in cytosolic fractions of Pseudomonas sp. G1DM21 isolated from Cr(VI) contaminated industrial landfill. Process Biochem 43:713–721

    Article  CAS  Google Scholar 

  • Dönmez G, Koçberber N (2005) Bioaccumulation of hexavalent chromium by enriched microbial cultures obtained from molasses and NaCl containing media. Process Biochem 40:2493–2498

    Article  Google Scholar 

  • EC (1998) Official J Eur Commun, L330/32. Dec 12 1998

  • Ekenberg M, Martander H, Welander T (2005) Biological reduction of hexavalent chromium—a field study. Water Environ Res 77:425–428

    Article  PubMed  CAS  Google Scholar 

  • Elangovan R, Philip L (2009) Performance evaluation of various bioreactors for the removal of Cr(VI) and organic matter from industrial effluent. Biochem Eng J 44:174–186

    Article  CAS  Google Scholar 

  • Elangovan R, Philip L, Chandraraj K (2010) Hexavalent chromium reduction by free and immobilized cell-free extract of Arthrobacter rhombi-RE. Appl Biochem Biotechnol 160:81–97

    Article  PubMed  CAS  Google Scholar 

  • Fernández PM, Figueroa LIC, Fariña JI (2010) Critical influence of culture medium and Cr(III) quantification protocols on the interpretation of Cr(VI) Bioremediation by Environmental fungal isolates. Water Air Soil Pollut 206:283–293

    Article  Google Scholar 

  • Fogler HS (1999) Elements of chemical reaction engineering, 3rd ed. edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Francoise CR, Bourg ACM (1991) Aqueous geochemistry of chromium: a review. Water Res 25:807–816

    Article  Google Scholar 

  • Gadd GM (1990) Heavy metal accumulation by bacteria and other microorganisms. Experientia 46(8):834–840

    Article  CAS  Google Scholar 

  • Han X, Wong YS, Wong MH, Tam NFY (2007) Biosorption and bioreduction of Cr(VI) by a microalgal isolate, Chlorella miniata. J Hazard Mater 146:65–72

    Article  PubMed  CAS  Google Scholar 

  • Ilias M, Md Rafiqullah I, Debnath BC, Mannan KSB, Mozammel Hoq Md (2011) Isolation and characterization of chromium(VI)-Reducing bacteria from tannery effluents. Indian J Microbiol 51(1):76–81

    Article  PubMed  CAS  Google Scholar 

  • James BR, Bartlett RJ (1983) “Behavior of chromium VI in soils. Interaction between oxidation–reduction and organic complexation. J Environ Qual 12:173–176

    Article  CAS  Google Scholar 

  • Kong B, Zeng X, Liu X, Li X, Li J, Luo S, Wei W (2009) Kinetic study and mathematical modeling of chromium(VI) reduction and microorganism growth under mixed culture. Curr Microbiol 59:565–571

    Article  PubMed  CAS  Google Scholar 

  • Lee S-E, Lee J-U, Chon H-T, Lee JS (2008) Microbiological reduction of hexavalent chromium by indigenous chromium-resistant bacteria in sand column experiments. Environ Geochem Health 30:141–145

    Article  PubMed  CAS  Google Scholar 

  • Levenspiel O (1974) Engenharia das reações químicas. In: Blücher E (ed), vol 2. Edgar Blucher, São Paulo, p 207–481

  • Middleton SS, Latmani RB, Mackey MR, Ellisman MH, Tebo BM, Criddle CS (2003) Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth. Biotechnol Bioeng 83:627–637

    Article  PubMed  CAS  Google Scholar 

  • Molokwane PE, Meli KC, Nkhalambayausi-Chirwa EM (2008) Chromium (VI) reduction in activated sludge bacteria exposed to high chromium loading: Brits culture (South Africa). Water Res 42:4538–4548

    Article  PubMed  CAS  Google Scholar 

  • Nieboer E, Jusys AA (1988) Biologic chemistry of chromium. In: Nriagu JO, Nieboer E (eds) Chromium in the natural and human environments. Wiley, New York, pp 31–33

    Google Scholar 

  • Okeke BC, Laymon J, Crenshaw S, Oji (2008) Environmental and kinetic parameters for Cr(VI) bioreduction by a bacterial monoculture purified from Cr(VI)-resistant consortium. Biol Trace Elem Res 123:229–241

    Article  PubMed  CAS  Google Scholar 

  • Orozco AMF, Contreras EM, Zaritzky NE (2010) Cr(VI) reduction capacity of activated sludge as affected by nitrogen and carbon sources, microbial acclimation and cell multiplication. J Hazard Mater 176:657–665

    Article  CAS  Google Scholar 

  • Orozco AMF, Contreras EM, Zaritzky NE (2011) Effects of combining biological treatment and activated carbon on hexavalent chromium reduction. Bioresour Technol 102:2495–2502

    Article  PubMed  CAS  Google Scholar 

  • Patterson JW (1985) Industrial wastewater treatment technology. Butterworth Publishers, Stoneham, pp 53–393

    Google Scholar 

  • Puzon GJ, Petersen JN, Roberts AG, Kramer DM, Xun L (2002) A bacterial flavin reductase system reduces chromate to a soluble chromium(III)-NAD+ complex. Biochem Biophy Res Comm 294:76–81

    Article  CAS  Google Scholar 

  • Quintelas C, Fonseca B, Silva B, Figueiredo H, Tavares T (2009) Treatment of chromium(VI) solutions in a pilot-scale bioreactor through a biofilm of Arthrobacter viscosus supported on GAC. Bioresour Technol 100:220–226

    Article  PubMed  CAS  Google Scholar 

  • Rai D, Sass BM, Moore DA (1987) Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorg Chem 26:345–349

    Article  CAS  Google Scholar 

  • Rengaraj S, Joo CK, Kim Y, Yi J (2003) Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H. J Hazard Mater B102:257–275

    Article  Google Scholar 

  • Sanghi R, Sankararamakrishnan N (2009) Fungal bioremediation of chromates: conformational changes of biomass during sequestration, binding and reduction of hexavalent chromium ions. J Hazard Mater 169:1074–1080

    Article  PubMed  CAS  Google Scholar 

  • Srinath T, Verma T, Ramteke PW, Garg SK (2002) Cr(VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 48:427–435

    Article  PubMed  CAS  Google Scholar 

  • Stearns DM, Belbruno JJ, Wetterhahn KE (1995a) A prediction of chromium(III) accumulation in humans from chromium dietary supplements. FASEB J 9:1650–1657

    PubMed  CAS  Google Scholar 

  • Stearns DM, Kennedy LJ, Courtney KD, Giangrande PH, Phieffer LS, Wetterhahn KE (1995b) Reduction of chromium(VI) by ascorbate leads to chromium-DNA Binding and DNA strand breaks in vitro. Biochemistry 34:910–919

    Article  PubMed  CAS  Google Scholar 

  • Tekerlekopoulou AG, Tsoamis G, Dermou E, Siozios S, Bourtzi K, Vayenas DV (2010) The effect of carbon source on microbial community structure and Cr(VI) reduction rate. Biotechnol Bioengin 107(3) 478–487

    Google Scholar 

  • Thacker U, Parikh R, Shouche Y et al (2006) Hexavalent chromium reduction by Providencia sp. Process Biochem 41:1332–1337

    Article  CAS  Google Scholar 

  • Tziotzios G, Dermou E, Politi D, Vayenas DV (2008) Simultaneous phenol removal and biological reduction of hexavalent chromium in a packed bed reactor. J Chem Technol Biotechnol 83:829–835

    Article  CAS  Google Scholar 

  • Viamajala S, Peyton BM, Sani RK, Apel WA, Petersen JN (2004) Toxic effects of Cr(VI) on anaerobic and aerobic growth of Shewanella oneidensis MR-1. Biotechnol Prog 20:87–95

    Article  PubMed  CAS  Google Scholar 

  • Vieira PA, Vieira RB, Faria S, Ribeiro EJ, Cardoso VL (2009) Biodegradation of diesel oil and gasoline contaminated effluent employing intermittent aeration. J Hazard Mater 168:1366–1372

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Shen H (1997) Modelling Cr(VI) reduction by pure bacterial cultures. Water Res 31(4):727–732

    Article  CAS  Google Scholar 

  • Wang Y, Xiao C (1995) Factors affecting hexavalent chromium reduction in pure cultures of bacteria. Water Res 29(11):2467–2474

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of FAPEMIG (Project TEC-1237/08), CNPq and CAPES–Brazil are gratefully acknowledged for the execution of the completed activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam M. de Resende.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leles, D.M.A., Lemos, D.A., Filho, U.C. et al. Evaluation of the bioremoval of Cr(VI) and TOC in biofilters under continuous operation using response surface methodology. Biodegradation 23, 441–454 (2012). https://doi.org/10.1007/s10532-011-9523-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-011-9523-8

Keywords

Navigation